scholarly journals Active and Reactive Power Adjustment of a Synchronous Generator Connected to Infinite Bus System by Fuzzy Logic Controller

1996 ◽  
Vol 1 (1) ◽  
pp. 105-112
Author(s):  
Muğdeşem Tanrıöven ◽  
Erdin Gökalp ◽  
Celal Kocatepe

A doubly-fed induction generator (DFIG) applied to wind power generation driven by wind turbine is under study for low voltage ride-through application during system unbalance. Use of DFIG in wind turbine is widely spreading due to its control over DC voltage and active and reactive power. Conventional dq axis current control using voltage source converters for both the grid side and the rotor side of the DFIG are analyzed and simulated. An improved control and operation of DFIG system under unbalanced grid voltage conditions by coordinating the control of both the rotor side converter (RSC) and the grid side converter (GSC) is done in this thesis. Simulation and analysis of DFIG system with wind turbine using Fuzzy logic controller for RSC and GSC under unbalanced condition is presented in the positive synchronous reference frame. The common DC-link voltage is controlled by grid side converter and control of DFIG’s stator output active and reactive power is controlled by rotor side converter. The steady-state operation of the DFIG and its dynamic response to voltage sag resulting from a remote fault on the 120-kV system is shown in this thesis using controllers. Modeling of DFIG system under Fuzzy logic controller to control voltage and active-reactive powers is done using MATLAB/SIMULINK.


Author(s):  
Ahmed Nasser Alsammak ◽  
Hasan Adnan Mohammed

<p>The Power quality of the electrical system is an important issue for industrial, commercial, and housing uses. An increasing request for high quality electrical power and an increasing number of distorting loads had led to increase the consideration of power quality by customers and utilities. The development and use of flexible alternating current transmission system (FACTs) controllers in power transmission systems had led to many applications of these controllers. A unified power flow controller (UPFC) is one of the FACTs elements which is used to control both active and reactive power flow of the transmission line. This paper tried to improve power quality using a fuzzy logic controller (FLC) based UPFC, where it used to control both active and reactive power flow, decreas the total harmonic distortion (THD), correct power factor, regulate line voltage and enhance transient stability. A comparison study of the performance between the system with a conventional PID controller and FLC has been done. The theoretical analysis has been proved by implementing the system using MATLAB/SIMULINK package.The Power quality of the electrical system is an important issue for industrial, commercial, and housing uses. An increasing request for high quality electrical power and an increasing number of distorting loads had led to increase the consideration of power quality by customers and utilities. The development and use of flexible alternating current transmission system (FACTs) controllers in power transmission systems had led to many applications of these controllers. A unified power flow controller (UPFC) is one of the FACTs elements which is used to control both active and reactive power flow of the transmission line. This paper tried to improve power quality using a fuzzy logic controller (FLC) based UPFC, where it used to control both active and reactive power flow, decreas the total harmonic distortion (THD), correct power factor, regulate line voltage and enhance transient stability. A comparison study of the performance between the system with a conventional PID controller and FLC has been done. The theoretical analysis has been proved by implementing the system using MATLAB/SIMULINK package.</p>


Author(s):  
Kaoutar Rabyi ◽  
Hassane Mahmoudi

In recent years, applications of facts systems have been developed for the compensation of active and reactive power. Facts systems are electronics devices that are connected to the wind farm. This paper presents the impacts of some of these devices on the stability of a wind farm, especially D-STATCOM, Static Var Compensator and Fuzzy SVC controller. First, a presentation of D-STATCOM, SVC, then fuzzy logic controller. In simulation study, the D-STATCOM ensures the stability of the voltage and current at the point of connection with the electrical grid. Finally, Comparing the SVC to the F-SVC simulations, we notice that the F-SVC is more performed than SVC for the compensation of the active and reactive power.


2020 ◽  
Author(s):  
Lorenzo Dambrosio

Abstract This paper deals with the control problem concerning the output voltage frequency and amplitude regulation of a wind system power plant not connected to the supply grid. The wind system configuration includes a horizontal-axis wind-turbine which drives a synchronous generator. An appropriate modeling approach has been adopted for both the wind-turbine and the synchronous generator. The proposed controller makes use of the fuzzy logic environment in order to take advantage of the wind plant system informations integrated into a limited number of equilibrium condition points (input variable - output variable pairs). The fuzzy logic controller described in the present paper merges the most appropriate fuzzy rules clusters, based on the steady state working conditions. Then, thanks to a Least Square Estimator algorithm, the proposed control algorithm evaluates, for each sample time, the linear relation between control law correction and control tracking error levels. In order to demonstrate robustness of the suggested fuzzy control algorithm, two sets of results have been provided: the first one consider a fuzzy base with equally spaced rules, whereas, in the second set results, the number of fuzzy rules is reduced by a 25%.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4796 ◽  
Author(s):  
Eyad Radwan ◽  
Mutasim Nour ◽  
Emad Awada ◽  
Ali Baniyounes

This paper presents a control scheme for a photovoltaic (PV) system that uses a single-phase grid-connected inverter with low-voltage ride-through (LVRT) capability. In this scheme, two PI regulators are used to adjust the power angle and voltage modulation index of the inverter; therefore, controlling the inverter’s active and reactive output power, respectively. A fuzzy logic controller (FLC) is also implemented to manage the inverter’s operation during the LVRT operation. The FLC adjusts (or de-rates) the inverter’s reference active and reactive power commands based on the grid voltage sag and the power available from the PV system. Therefore, the inverter operation has been divided into two modes: (i) Maximum power point tracking (MPPT) during the normal operating conditions of the grid, and (ii) LVRT support when the grid is operating under faulty conditions. In the LVRT mode, the de-rating of the inverter active output power allows for injection of some reactive power, hence providing voltage support to the grid and enhancing the utilization factor of the inverter’s capacity. The proposed system was modelled and simulated using MATLAB Simulink. The simulation results showed good system performance in response to changes in reference power command, and in adjusting the amount of active and reactive power injected into the grid.


Sign in / Sign up

Export Citation Format

Share Document