scholarly journals Anti-Inflammatory Potential of Monogalactosyl Diacylglycerols and a Monoacylglycerol from the Edible Brown Seaweed Fucus spiralis Linnaeus

Marine Drugs ◽  
2014 ◽  
Vol 12 (3) ◽  
pp. 1406-1418 ◽  
Author(s):  
Graciliana Lopes ◽  
Georgios Daletos ◽  
Peter Proksch ◽  
Paula Andrade ◽  
Patrícia Valentão
Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 277
Author(s):  
Lei Wang ◽  
Hye-Won Yang ◽  
Ginnae Ahn ◽  
Xiaoting Fu ◽  
Jiachao Xu ◽  
...  

In the present study, the in vitro and in vivo anti-inflammatory effects of the sulfated polysaccharides isolated from Sargassum fulvellum (SFPS) were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish. The results indicated that SFPS improved the viability of LPS-stimulated RAW 264.7 macrophages from 80.02 to 86.80, 90.09, and 94.62% at the concentration of 25, 50, and 100 µg/mL, respectively. Also, SFPS remarkably and concentration-dependently decreased the production levels of inflammatory molecules including nitric oxide (NO), tumor necrosis factor-alpha, prostaglandin E2, interleukin-1 beta, and interleukin-6 in LPS-treated RAW 264.7 macrophages. In addition, SFPS significantly inhibited the expression levels of cyclooxygenase-2 and inducible nitric oxide synthase in LPS-treated RAW 264.7 macrophages. Furthermore, the in vivo test results indicated that SFPS improved the survival rate of LPS-treated zebrafish from 53.33 to 56.67, 60.00, and 70.00% at the concentration of 25, 50, and 100 µg/mL, respectively. In addition, SFPS effectively reduced cell death, reactive oxygen species, and NO levels in LPS-stimulated zebrafish. Taken together, these results suggested that SFPS possesses strong in vitro and in vivo anti-inflammatory activities, and could be used as an ingredient to develop anti-inflammatory agents in the functional food and pharmaceutical industries.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 28
Author(s):  
D. P. Nagahawatta ◽  
Hyun-Soo Kim ◽  
Young-Heun Jee ◽  
Thilina U. Jayawardena ◽  
Ginnae Ahn ◽  
...  

Sargassum horneri is an invasive brown seaweed that grows along the shallow coastal areas of the Korean peninsula, which are potentially harmful to fisheries and natural habitats in the areas where it is accumulated. Therefore, the author attempted to evaluate the anti-inflammatory mechanism of Sargachromenol isolated from S. horneri against particulate matter (PM)-stimulated RAW 264.7 macrophages. PM is a potent inducer of respiratory diseases such as lung dysfunctions and cancers. In the present study, the anti-inflammatory properties of Sargachromenol were validated using enzyme-linked immunosorbent assay (ELISA), Western blots, and RT-qPCR experiments. According to the results, Sargachromenol significantly downregulated the PM-induced proinflammatory cytokines, Prostaglandin E2 (PGE2), and Nitric Oxide (NO) secretion via blocking downstream activation of Toll-like receptor (TLR)-mediated nuclear factor kappa B (NF-κB) and MAPKs phosphorylation. Thus, Sargachromenol is a potential candidate for innovation in various fields including pharmaceuticals, cosmeceuticals, and functional food.


2016 ◽  
Vol 51 (12) ◽  
pp. 1945-1953 ◽  
Author(s):  
Hong-Ting Victor Lin ◽  
Wen-Jung Lu ◽  
Guo-Jane Tsai ◽  
Chien-Te Chou ◽  
Hsin-I Hsiao ◽  
...  

2012 ◽  
Vol 73 (2) ◽  
pp. 82-89 ◽  
Author(s):  
Lamia Mhadhebi ◽  
Afef Dellai ◽  
Audrey Clary-Laroche ◽  
Rafik Ben Said ◽  
Jacques Robert ◽  
...  

2015 ◽  
Vol 28 (3) ◽  
pp. 2005-2017 ◽  
Author(s):  
Luiza Sheyla Evenni P. Will Castro ◽  
Allisson J. Gomes Castro ◽  
Marília da S. Nascimento Santos ◽  
Thuane de Sousa Pinheiro ◽  
Kahena de Quevedo Florentin ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (5) ◽  
pp. 275 ◽  
Author(s):  
Olga N. Pozharitskaya ◽  
Ekaterina D. Obluchinskaya ◽  
Alexander N. Shikov

The aim of this study was to elucidate some mechanisms of radical scavenging and the anti-inflammatory, anti-hyperglycemic, and anti-coagulant bioactivities of high molecular weight fucoidan from Fucus vesiculosus in several in vitro models. Fucoidan has displayed potent 1, 1-diphenyl-2-picryl hydrazil radical scavenging and reduction power activities. It significantly inhibits the cyclooxygenase-2 (COX-2) enzyme (IC50 4.3 μg mL−1) with a greater selectivity index (lg(IC80 COX-2/IC80COX-1), −1.55) than the synthetic non-steroidal anti-inflammatory drug indomethacin (lg(IC80 COX-2/IC80COX-1), −0.09). A concentration-dependent inhibition of hyaluronidase enzyme with an IC50 of 2.9 μg mL−1 was observed. Fucoidan attenuated the lipopolysaccharide-induced expression of mitogen-activated protein kinase p38. Our findings suggest that the inhibition of dipeptidyl peptidase-IV (DPP-IV) (IC50 1.11 μg mL−1) is one of the possible mechanisms involved in the anti-hyperglycemic activity of fucoidan. At a concentration of 3.2 μg mL−1, fucoidan prolongs the activated partial thromboplastin time and thrombin time by 1.5-fold and 2.5-fold compared with a control, respectively. A significant increase of prothrombin time was observed after the concentration of fucoidan was increased above 80 μg mL−1. This evidenced that fucoidan may have an effect on intrinsic/common pathways and little effect on the extrinsic mechanism. This study sheds light on the multiple pathways of the bioactivities of fucoidan. As far as we know, the inhibition of hyaluronidase and DPP-IV by high molecular fucoidan was studied for the first time in this work. Our results and literature data suggest that molecular weight, sulfate content, fucose content, and polyphenols may contribute to these activities. It seems that high molecular weight fucoidan has promising therapeutic applications in different pharmacological settings. Anti-oxidant, anti-inflammatory and anti-coagulant drugs have been used for the management of complications of COVID19. Taken as a whole, fucoidan could be considered as a prospective candidate for the treatment of patients with COVID19; however, additional research in this field is required.


Marine Drugs ◽  
2018 ◽  
Vol 17 (1) ◽  
pp. 7 ◽  
Author(s):  
Seungeun Lee ◽  
Kumju Youn ◽  
Dong Kim ◽  
Mok-Ryeon Ahn ◽  
Eunju Yoon ◽  
...  

Alzheimer disease (AD) is a neurodegenerative disorder characterized by excessive accumulation of amyloid-beta peptide (Aβ) and progressive loss of neurons. Therefore, the inhibition of Aβ-induced neurotoxicity is a potential therapeutic approach for the treatment of AD. Ecklonia cava is an edible brown seaweed, which has been recognized as a rich source of bioactive derivatives, mainly phlorotannins. In this study, phlorotannins including eckol, dieckol, 8,8′-bieckol were used as potential neuroprotective candidates for their anti-apoptotic and anti-inflammatory effects against Aβ25-35-induced damage in PC12 cells. Among the tested compounds, dieckol showed the highest effect in both suppressing intracellular oxidative stress and mitochondrial dysfunction and activation of caspase family. Three phlorotannins were found to inhibit TNF-α, IL-1β and PGE2 production at the protein levels. These result showed that the anti-inflammatory properties of our compounds are related to the down-regulation of proinflammatory enzymes, iNOS and COX-2, through the negative regulation of the NF-κB pathway in Aβ25-35-stimulated PC12 cells. Especially, dieckol showed the strong anti-inflammatory effects via suppression of p38, ERK and JNK. However, 8,8′-bieckol markedly decreased the phosphorylation of p38 and JNK and eckol suppressed the activation of p38. Therefore, the results of this study indicated that dieckol from E. cava might be applied as a drug candidate for the development of new generation therapeutic agents against AD.


Sign in / Sign up

Export Citation Format

Share Document