scholarly journals In Vitro and In Vivo Anti-Inflammatory Effects of Sulfated Polysaccharides Isolated from the Edible Brown Seaweed, Sargassum fulvellum

Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 277
Author(s):  
Lei Wang ◽  
Hye-Won Yang ◽  
Ginnae Ahn ◽  
Xiaoting Fu ◽  
Jiachao Xu ◽  
...  

In the present study, the in vitro and in vivo anti-inflammatory effects of the sulfated polysaccharides isolated from Sargassum fulvellum (SFPS) were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish. The results indicated that SFPS improved the viability of LPS-stimulated RAW 264.7 macrophages from 80.02 to 86.80, 90.09, and 94.62% at the concentration of 25, 50, and 100 µg/mL, respectively. Also, SFPS remarkably and concentration-dependently decreased the production levels of inflammatory molecules including nitric oxide (NO), tumor necrosis factor-alpha, prostaglandin E2, interleukin-1 beta, and interleukin-6 in LPS-treated RAW 264.7 macrophages. In addition, SFPS significantly inhibited the expression levels of cyclooxygenase-2 and inducible nitric oxide synthase in LPS-treated RAW 264.7 macrophages. Furthermore, the in vivo test results indicated that SFPS improved the survival rate of LPS-treated zebrafish from 53.33 to 56.67, 60.00, and 70.00% at the concentration of 25, 50, and 100 µg/mL, respectively. In addition, SFPS effectively reduced cell death, reactive oxygen species, and NO levels in LPS-stimulated zebrafish. Taken together, these results suggested that SFPS possesses strong in vitro and in vivo anti-inflammatory activities, and could be used as an ingredient to develop anti-inflammatory agents in the functional food and pharmaceutical industries.

2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Lei Wang ◽  
You-Jin Jeon ◽  
Jae-Il Kim

Abstract Background Inflammation plays a crucial role in the pathogenesis of many diseases such as arthritis and atherosclerosis. In the present study, we evaluated anti-inflammatory activity of sterol-rich fraction prepared from Spirogyra sp., a freshwater green alga, in an effort to find bioactive extracts derived from natural sources. Methods The sterol content of ethanol extract of Spirogyra sp. (SPE) was enriched by fractionation with hexane (SPEH), resulting 6.7 times higher than SPE. Using this fraction, the in vitro and in vivo anti-inflammatory activities were evaluated in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells and zebrafish. Results SPEH effectively and dose-dependently decreased the production of nitric oxide (NO) and prostaglandin E2 (PGE2). SPEH suppressed the production of pro-inflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β through downregulating nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW 264.7 cells without cytotoxicity. The in vivo test results indicated that SPEH significantly and dose-dependently reduced reactive oxygen species (ROS) generation, cell death, and NO production in LPS-stimulated zebrafish. Conclusions These results demonstrate that SPEH possesses strong in vitro and in vivo anti-inflammatory activities and has the potential to be used as healthcare or pharmaceutical material for the treatment of inflammatory diseases.


2012 ◽  
Vol 108 (9) ◽  
pp. 1562-1573 ◽  
Author(s):  
Victor Pallarès ◽  
Damien Calay ◽  
Lídia Cedó ◽  
Anna Castell-Auví ◽  
Martine Raes ◽  
...  

Macrophages play an important role in immunogenic challenges by producing reactive oxygen species, NO and proinflammatory cytokines that can aggravate and propagate local inflammation. Multiple mechanisms regulate these inflammatory processes. NF-κB and activator protein 1 pathways are crucial in the expression of proinflammatory genes, such as TNF-α, IL-1 (α or β) and -6. Some polyphenols, which are present in beverages, vegetables and fruits, and PUFA, which are present in marine oils and fish food, possess anti-inflammatory effects in vivo and in vitro. Our aim in the present study was to assess whether polyphenols and PUFA have synergistic anti-inflammatory effects in murine macrophages in vitro. Inflammation in RAW 264.7 macrophages was induced by lipopolysaccharide at 100 ng/ml. The treatments with molecules were performed by co-incubation for 19 h. A NO production assay by Griess reaction, a phosphoprotein assay by Pathscan ELISA kit and gene expression analysis using the TaqMan® Low-density Array for ninety-one genes related to inflammation, oxidative stress and metabolism were performed to assess the synergistic anti-inflammatory effects of polyphenols, epigallocatechin gallate and resveratrol (Res; 2·5 μg/ml), and the PUFA, DHA and EPA (30 μm). Adding Res+EPA had an enhanced anti-inflammatory effect, in comparison with EPA and Res alone, leading to decreased NO levels; modulating the phospho-stress activated protein kinase/Jun N-terminal kinase (P-SAPK/JNK) level; down-regulating proinflammatory genes, such as IL, chemokines, transcription factors; and up-regulating several antioxidant genes. Therefore, this combination has a stronger anti-inflammatory effect than either of these molecules separately in RAW macrophages.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 300
Author(s):  
Moo Rim Kang ◽  
Sun Ah Jo ◽  
Hyunju Lee ◽  
Yeo Dae Yoon ◽  
Joo-Hee Kwon ◽  
...  

Scytonemin is a yellow-green ultraviolet sunscreen pigment present in different genera of aquatic and terrestrial blue-green algae, including marine cyanobacteria. In the present study, the anti-inflammatory activities of scytonemin were evaluated in vitro and in vivo. Topical application of scytonemin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear swelling in BALB/c mice. The expression of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) was also suppressed by scytonemin treatment in the TPA-treated ear of BALB/c mice. In addition, scytonemin inhibited lipopolysaccharide (LPS)-induced production of TNF-α and nitric oxide (NO) in RAW 264.7 cells, a murine macrophage-like cell line, and the mRNA expressions of TNF-α and iNOS were also suppressed by scytonemin in LPS-stimulated RAW 264.7 cells. Further study demonstrated that LPS-induced NF-κB activity was significantly suppressed by scytonemin treatment in RAW 264.7 cells. Our results also showed that the degradation of IκBα and nuclear translocation of the p65 subunit were blocked by scytonemin in LPS-stimulated RAW 264.7 cells. Collectively, these results suggest that scytonemin inhibits skin inflammation by blocking the expression of inflammatory mediators, and the anti-inflammatory effect of scytonemin is mediated, at least in part, by down-regulation of NF-κB activity. Our results also suggest that scytonemin might be used as a multi-function skin care ingredient for UV protection and anti-inflammation.


2018 ◽  
Vol 19 (11) ◽  
pp. 3504 ◽  
Author(s):  
Ha-Kyoung Kwon ◽  
Min-Jung Song ◽  
Hye-Ji Lee ◽  
Tae-Sik Park ◽  
Moon Kim ◽  
...  

Cordyceps militaris is a medicinal mushroom used to treat immune-related diseases in East Asia. We investigated the anti-inflammatory effect of the extract of C. militaris grown on germinated Rhynchosia nulubilis (GRC) fermented with Pediococcus pentosaceus ON89A isolated from onion (GRC-ON89A) in vivo as well as in vitro. The anti-inflammatory effect of GRC-ON89A was investigated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The total polyphenol content (TPC) and total flavonoid content (TFC) in the GRC-ON89A ethanol extract were significantly increased compared to that in GRC. GRC-ON89A hexane fraction (GRC-ON89A-Hex) inhibited the release of nitric oxide (NO) compared to that of the LPS-treated control without cytotoxicity in LPS-stimulated RAW 264.7 macrophages. GRC-ON89A-Hex decreased the inducible NO synthase (iNOS), cyclooxygenase 2 (COX2), and tumor necrosis factor (TNF)-α mRNA expression in LPS-stimulated RAW 264.7 macrophages. In addition, pre-treatment with GRC-ON89A-Hex significantly inhibited LPS-stimulated phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB. To induce allergic contact dermatitis (ACD), 1-fluoro-2, 4-dinitrofluorobenzene (DNFB) was applied to the surface of the right ears of C57BL/6N mice. GRC-ON89A reduced the ear swelling and thickness in DNFB-induced ACD mice. This study demonstrates the potential usefulness of GRC-ON89A as an anti-inflammatory dietary supplement or drug.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4285
Author(s):  
Pimpichaya Sangchart ◽  
Panyada Panyatip ◽  
Teerasak Damrongrungruang ◽  
Aroonsri Priprem ◽  
Pramote Mahakunakorn ◽  
...  

The pineal gland is a neuroendocrine organ that plays an important role in anti-inflammation through the hormone melatonin. The anti-inflammatory effects of melatonin and its derivatives have been reported in both in vitro and in vivo models. Our previous study reported the potent antioxidant and neuroprotective activities of bromobenzoylamide substituted melatonin. In silico analysis successfully predicted that melatonin bromobenzoylamid derivatives were protected from metabolism by CYP2A1, which is a key enzyme of the melatonin metabolism process. Therefore, the anti-inflammatory activities of melatonin and its bromobenzoylamide derivatives BBM and EBM were investigated in LPS-induced RAW 264.7 macrophages and croton oil-induced ear edema in mice. The experiments showed that BBM and EBM significantly reduced production of the inflammatory mediators interleukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) in a dose-dependent manner, but only slightly affected TNF-α in LPS-induced RAW 264.7 macrophages. This suggests that modifying melatonin at either the N1-position or the N-acetyl side chain affected production of NO, PGE2 and IL-6 in in vitro model. In the croton oil-induced mouse ear edema model, BBM, significantly decreased ear edema thickness at 2–4 h. It leads to conclude that bromobenzoylamide derivatives of melatonin may be one of the potential candidates for a new type of anti-inflammatory agent.


2016 ◽  
Vol 7 (2) ◽  
pp. 1002-1013 ◽  
Author(s):  
Weicheng Hu ◽  
Xinfeng Wang ◽  
Lei Wu ◽  
Ting Shen ◽  
Lilian Ji ◽  
...  

In vitro and in vivo anti-inflammatory activities of apigenin-7-O-β-d-glucuronide.


Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 493 ◽  
Author(s):  
Lei Wang ◽  
Jae Young Oh ◽  
Jin Hwang ◽  
Jae Young Ko ◽  
You-Jin Jeon ◽  
...  

It has been reported that enzymatic digestion of algae could improve the yield and enhance the biological activity compared to water and organic extraction. Our previous research indicated that Celluclast-assisted extract of Sargassum fulvellum (SF) possessed higher carbohydrate content and stronger antioxidant activity compared to water and other enzyme-assisted extracts. In the present study, we evaluated the antioxidant activities of polysaccharides from SF (SFPS) in vitro in Vero cells and in vivo in zebrafish. SFPS was obtained by Celluclast-assisted hydrolysis and ethanol precipitation. Results showed that SFPS contained 74.55 ± 1.26% sulfated polysaccharides and effectively scavenged 1, 1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and alkyl radicals. SFPS significantly and dose-dependently scavenged intracellular reactive oxygen species (ROS) and improved cell viability. Further studies indicated that SFPS reduced apoptotic body formation through downregulation of proapoptotic protein (Bax and cleaved caspase-3) levels and upregulation of antiapoptotic protein (Bcl-xL and PARP) levels in 2,2-azobis(2-amidinopropane) hydrochloride (AAPH)-treated Vero cells. In addition, SFPS showed strong protective effect against AAPH-stimulated oxidative stress in vivo in zebrafish, as demonstrated by the improved survival rate, reduced heart rate, and decrease in ROS, cell death, and lipid peroxidation levels. These results suggest that SFPS possesses strong in vitro and in vivo antioxidant activity and can be a potential ingredient in the pharmaceutical and cosmeceutical industries.


Author(s):  
Krishna Chaithanya K ◽  
Gopalakrishnan V K ◽  
ZenebeHagos . ◽  
Nagaraju B ◽  
Kamalakararao K ◽  
...  

Objective: Mesuaferrea L is a medicinal plant belongs to the family Clusiace, it is extensively used in folk medicine for treatment of chronic inflammatory diseases.The present study was aimed to evaluate in vitro and in vivo anti-inflammatory activity of M. ferrea L. Methods: The in vitro anti-inflammatory activities such as nitric oxide, PGE2, pro-inflammatory cytokines (TNF-α and IL-1β) were studied in RAW 264.7 cells and in vivo studies were carried out on carrageenan -induced inflammation in Wistar rats. The sequentially extracted M. ferreaL bark extracts (MFBHE, MFBEE, and MFBME) exhibited inhibitory effects on pro-inflammatory mediators such as nitric oxide, prostaglandin E2, tumour necrosis factorαandinterleukin-1βproduction in concentration dependent manner in LPS induced RAW 264.7 cells andCarrageenan induced paw oedema in Wistar rats. Conclusion: The result of the present study indicated that M. ferrea L ethyl acetate bark extract exhibited significant in vitroand in vivoanti-inflammatory activity.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3177 ◽  
Author(s):  
Yun-Chen Tsai ◽  
Sin-Ling Wang ◽  
Mei-Yao Wu ◽  
Chia-Huei Liao ◽  
Chao-Hsiung Lin ◽  
...  

Flavonoids, widely present in medicinal plants and fruits, are known to exhibit multiple pharmacological activities. In this study, we isolated a flavonoid compound, pilloin, from Aquilaria sinensis and investigated its anti-inflammatory activity in bacterial lipopolysaccharide-induced RAW 264.7 macrophages and septic mice. Pilloin inhibited NF-κB activation and reduced the phosphorylation of IκB in LPS-stimulated macrophages. Moreover, pilloin significantly suppressed the production of pro-inflammatory molecules, such as TNF-α, IL-6, COX-2 and iNOS, in LPS-treated RAW 264.7 macrophages. Additionally, pilloin suppressed LPS-induced morphological alterations, phagocytic activity and ROS elevation in RAW 264.7 macrophages. The mitogen-activated protein kinase-mediated signalling pathways (including JNK, ERK, p38) were also inhibited by pilloin. Furthermore, pilloin reduced serum levels of TNF-α (from 123.3 ± 7 to 46.6 ± 5.4 ng/mL) and IL-6 levels (from 1.4 ± 0.1 to 0.7 ± 0.1 ng/mL) in multiple organs of LPS-induced septic mice (liver: from 71.8 ± 3.2 to 36.7 ± 4.3; lung: from 118.6 ± 10.6 to 75.8 ± 11.9; spleen: from 185.9 ± 23.4 to 109.6 ± 18.4; kidney: from 160.3 ± 11.8 to 75 ± 10.8 pg/mL). In summary, our results demonstrate the anti-inflammatory potential of pilloin and reveal its underlying molecular mechanism of action.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Sign in / Sign up

Export Citation Format

Share Document