scholarly journals Partial Characterization of Protease Inhibitors of Ulva ohnoi and Their Effect on Digestive Proteases of Marine Fish

Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 319
Author(s):  
Antonio Jesús Vizcaíno ◽  
Alba Galafat ◽  
María Isabel Sáez ◽  
Tomás Francisco Martínez ◽  
Francisco Javier Alarcón

This piece of research evaluates the presence of protease inhibitors in the macroalga Ulva ohnoi and provides an initial overview of their mode of action. The ability of Ulva protease inhibitors to inhibit digestive proteases of three marine fish species, as well as their capacity to hamper the hydrolysis of a reference protein by those fish proteases, were assessed. In addition, thermal stability and the mode of inhibition on trypsin and chymotrypsin were also studied. Dose-response inhibition curves and in vitro protein hydrolysis assays revealed a noticeable inhibition of fish enzymes when Ulva concentration increased in the assay. The thermal treatment of Ulva reduced markedly the inhibitory effect on fish digestive protease. Finally, Lineweaver–Burk plots indicated that trypsin and chymotrypsin inhibition consisted of a mixed-type inhibition mechanism in which the inhibitory effect depends on Ulva concentration. Overall, the results confirmed the presence of protease inhibitors in Ulva, though heat treatment was enough for inactivating these compounds.

2011 ◽  
Vol 22 (1) ◽  
pp. 141-152 ◽  
Author(s):  
Xiao-Wei Chen ◽  
Dara Leto ◽  
Tingting Xiong ◽  
Genggeng Yu ◽  
Alan Cheng ◽  
...  

Insulin stimulates glucose transport in muscle  and adipose tissue by translocation of glucose transporter 4 (GLUT4) to the plasma membrane. We previously reported that activation of the small GTPase RalA downstream of PI 3-kinase plays a critical role in this process by mobilizing the exocyst complex for GLUT4 vesicle targeting in adipocytes. Here we report the identification and characterization of a Ral GAP complex (RGC) that mediates the activation of RalA downstream of the PI 3-kinase/Akt pathway. The complex is composed of an RGC1 regulatory subunit and an RGC2 catalytic subunit (previously identified as AS250) that directly stimulates the guanosine triphosphate hydrolysis of RalA. Knockdown of RGC proteins leads to increased RalA activity and glucose uptake in adipocytes. Insulin inhibits the GAP complex through Akt2-catalyzed phosphorylation of RGC2 in vitro and in vivo, while activated Akt relieves the inhibitory effect of RGC proteins on RalA activity. The RGC complex thus connects PI 3-kinase/Akt activity to the transport machineries responsible for GLUT4 translocation.


2012 ◽  
Vol 56 ◽  
pp. S329 ◽  
Author(s):  
J.A. Howe ◽  
D. Graham ◽  
P. McMonagle ◽  
S. Curry ◽  
R. Chase ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 355 ◽  
Author(s):  
Deok-Kyu Hwang ◽  
Ju-Hyun Kim ◽  
Yongho Shin ◽  
Won-Gu Choi ◽  
Sunjoo Kim ◽  
...  

Catalposide, an active component of Veronica species such as Catalpa ovata and Pseudolysimachion lingifolium, exhibits anti-inflammatory, antinociceptic, anti-oxidant, hepatoprotective, and cytostatic activities. We characterized the in vitro metabolic pathways of catalposide to predict its pharmacokinetics. Catalposide was metabolized to catalposide sulfate (M1), 4-hydroxybenzoic acid (M2), 4-hydroxybenzoic acid glucuronide (M3), and catalposide glucuronide (M4) by human hepatocytes, liver S9 fractions, and intestinal microsomes. M1 formation from catalposide was catalyzed by sulfotransferases (SULTs) 1C4, SULT1A1*1, SULT1A1*2, and SULT1E1. Catalposide glucuronidation to M4 was catalyzed by gastrointestine-specific UDP-glucuronosyltransferases (UGTs) 1A8 and UGT1A10; M4 was not detected after incubation of catalposide with human liver preparations. Hydrolysis of catalposide to M2 was catalyzed by carboxylesterases (CESs) 1 and 2, and M2 was further metabolized to M3 by UGT1A6 and UGT1A9 enzymes. Catalposide was also metabolized in extrahepatic tissues; genetic polymorphisms of the carboxylesterase (CES), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes responsible for catalposide metabolism may cause inter-individual variability in terms of catalposide pharmacokinetics.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Bui T. T. Nga ◽  
Yuki Takeshita ◽  
Misa Yamamoto ◽  
Yoshimi Yamamoto

Mouse cytotoxic T-lymphocyte antigen-2α (CTLA-2α), Drosophila CTLA-2-like protein (crammer), and Bombyx cysteine protease inhibitor (BCPI) belong to a novel family of cysteine protease inhibitors (I29). Their inhibitory mechanisms were studied comparatively. CTLA-2α contains a cysteine residue (C75), which is essential for its inhibitory potency. The CTLA-2α monomer was converted to a disulfide-bonded dimer in vitro and in vivo. The dimer was fully inhibitory, but the monomer, which possessed a free thiol residue, was not. A disulfide-bonded CTLA-2α/cathepsin L complex was isolated, and a cathepsin L subunit with a molecular weight of 24,000 was identified as the interactive enzyme protein. Crammer also contains a cysteine residue (C72). Both dimeric and monomeric forms of crammer were inhibitory. A crammer mutant with Cys72 to alanine (C72A) was fully inhibitory, while the replacement of Gly73 with alanine (G73A) caused a significant loss in inhibitory potency, which suggests a different inhibition mechanism from CTLA-2α. BCPI does not contain cysteine residue. C-terminal region (L77-R80) of BCPI was essential for its inhibitory potency. CTLA-2α was inhibitory in the acidic pH condition but stabilized cathepsin L under neutral pH conditions. The different inhibition mechanisms and functional considerations of these inhibitors are discussed.


1980 ◽  
Vol 95 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Knut Nordenström ◽  
Anita Sjögren ◽  
Lars Hamberger

Abstract. Immature female rats were injected sc with a single dose of PMSG to induce growth and maturation of ovarian follicles. In the morning of prooestrus the rats were given a single ip injection of LH (10 μg/rat) or 0.154 m NaCl, 2 h prior to sacrifice. Granulosa cells were isolated from the pre-ovulatory follicles and incubated in Krebs bicarbonate buffer, for 1 h with or without in vitro addition of various test substances. Following incubation the amounts of cAMP in tissue plus medium were determined. It was found that the isolated granulosa cells exposed to LH in vivo responded to the addition of LH in vitro with a production of high amounts of cAMP, i.e. these cells were not refractory to LH stimulation and in fact responded better than granulosa cells isolated from ovaries not exposed to LH in vivo. The addition to the incubation medium of follicular fluid (FFl) obtained from pre-ovulatory follicles decreased the effect of LH in vitro when added at a final concentration of 1% and completely abolished it at a concentration of 3%. Removal of steroids from the FFl did not influence the inhibitory effect and the addition of a phosphodiesterase inhibitor (IBMX) in vitro did not alter the results in principle. These results point to the existence of a factor in the FF1 which interacts with the sensitivity of the isolated preovulatory granulosa cells to repeated exposures to LH. Characterization of this factor is subject to further investigations.


2005 ◽  
Vol 49 (4) ◽  
pp. 1381-1390 ◽  
Author(s):  
Victoria Chung ◽  
Anthony R. Carroll ◽  
Norman M. Gray ◽  
Nigel R. Parry ◽  
Pia A. Thommes ◽  
...  

ABSTRACT A recombinant vaccinia virus, expressing the NS3-to-NS5 region of the N clone of hepatitis C virus (HCV), was generated and utilized both in a gel-based assay and in an enzyme-linked immunosorbent assay (ELISA) to evaluate the pyrrolidine-5,5-trans-lactams, a series of inhibitors of the HCV NS3/4A protease. The absolute levels of processed, mature HCV nonstructural proteins in this system were found to decrease in the presence of the trans-lactams. Monitoring of this reduction enabled end points and 50% inhibitory concentrations to be calculated in order to rank the active compounds according to potency. These compounds had no effect on the transcription or translation of the NS3-5 polyprotein at concentrations shown to inhibit NS3/4A protease, and they were shown to be specific inhibitors of this protease. The ELISA, originally developed using the vaccinia virus expression system, was modified to utilize Huh-7 cells containing an HCV replicon. Results with this assay correlated well with those obtained with the recombinant vaccinia virus assays. These results demonstrate the utility of these assays for the characterization of NS3/4A protease inhibitors. In addition, inhibitors of other viral targets, such as polymerase and helicase, can be evaluated in the context of the replicon ELISA.


1977 ◽  
Vol 162 (1) ◽  
pp. 9-18 ◽  
Author(s):  
L Å Idahl ◽  
Å Lernmark ◽  
J Sehlin ◽  
I B Täljedal

Exposing micro-dissected pancreatic islets of non-inbred ob/ob mice to 2-5 mM-alloxan for 10 min decreased the ability of the islets to accumulate Rb+. Rb+ accumulation in pieces of exocrine pancreas was unaffected by alloxan. When islets were treated with alloxan in the presence of 2-20 mM-D-glucose, the Rb+-accumulating ability was protected in a dose-dependent manner. The protective action of D-glucose was reproduced with 3-O-methyl-D-glucose but not with L-glucose or D-mannoheptulose; mannoheptulose prevented D-glucose from exerting its protective action. The inhibition of Rb+ accumulation was due to a decreased inward pumping, since alloxan did not affect Rb+ efflux from pre-loaded islets. The inhibitory effect of alloxan had a latency of about 1 min, as revealed by experiments with dispersed islet cells in suspension. Alloxan-treated islets showed only a marginal decrease in ATP and no change in glucose 6-phosphate concentration. Although alloxan slightly decreased the hydrolysis of ATP in a subcellular fraction enriched in plasma membranes, this effect could not be attributed to a ouabain-sensitive adenosine triphosphatase. The plasma membranes exhibited a K+-activated hydrolysis of p-nitrophenyl phosphate; this enzyme activity too was insensitive to alloxan. Glucose may protect the univalent-cation pump by preventing permeation of alloxan via a path coupled to the hexose-transport system. Inhibition of the pump may be fundamental to the induction of alloxan-diabetes.


2011 ◽  
Vol 685 ◽  
pp. 352-356 ◽  
Author(s):  
Hong Lian Dai ◽  
Pei Chen ◽  
Yin Chao Han ◽  
Xin Yu Wang ◽  
Shi Pu Li

HAP Nanoparticles Was Synthesized by Homogeneous Precipitation. the Size Distribution, Crystallization Degree and Morphology of the Precipitation Were Characterized by Laser Granularity Instrument, X-Ray Diffraction (XRD), and Transmission Electron Microscope (TEM) Respectively. the Prepared HAP Nanoparticles Were Used for the Treatment of Human Chronic Myeloid Leukemia K562 Cells. the Inhibition Effect of the Nanoparticles on the Proliferation of K562 Cells Was Measured by MTT Assay and Growth Curve Test. the Results Showed that the HAP Nanoparticles Inhibit the Proliferation of K562 Cells Dramatically in Vitro. the Likely Inhibition Mechanism of HAP Nanoparticles on the K562 Cells Is that the Nanoparticles Entered into the Dells, Induced a Series of Cell Changes, through Cell Death of Apoptosis, Oncosis and Autoschizis, Thus Led to the Death of K562 Cells.


2018 ◽  
Author(s):  
Rodrigo Ortiz-Meoz ◽  
Liping Wang ◽  
Rosalie Matico ◽  
Anna Rutkowska ◽  
Martha De la Rosa ◽  
...  

ABSTRACTIndoleamine-2,3-dioxygenase 1 (IDO1) is a heme-containing enzyme that catalyzes the rate-limiting step in the kynurenine pathway of tryptophan (TRP) metabolism. As an inflammation-induced immunoregulatory enzyme, pharmacological inhibition of IDO1 activity is currently being pursued as a potential therapeutic tool for the treatment of cancer and other disease states. As such, a detailed understanding of the mechanism of action of established and novel IDO1 inhibitors remains of great interest. Comparison of a newly-developed IDO1 inhibitor (GSK5628) to the existing best-in-class compound, epacadostat (Incyte), allows us to report on a unique inhibition mechanism for IDO1. Here, we demonstrate that GSK5628 inhibits IDO1 by competing with heme for binding to a heme-free conformation of the enzyme (apo-IDO1) while epacadostat coordinates its binding with the iron atom of the IDO1 heme cofactor. Comparison of these two compounds in cellular systems reveals a long-lasting inhibitory effect of GSK5628, undescribed for other known IDO1 inhibitors. Detailed characterization of this apo-binding mechanism for IDO1 inhibition may help design superior inhibitors or may confer a unique competitive advantage over other IDO1 inhibitors vis-à-vis specificity and pharmacokinetic parameters.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244327
Author(s):  
Antonio J. Villatoro ◽  
Cristina Alcoholado ◽  
María del Carmen Martín-Astorga ◽  
Gustavo Rico ◽  
Viviana Fernández ◽  
...  

Limbal stem cells (LSCs) are a quiescent cell population responsible for the renewal of the corneal epithelium. Their deficiency is responsible for the conjunctivization of the cornea that is seen in different ocular pathologies, both in humans and in the canine species. The canine species represents an interesting preclinical animal model in ocular surface pathologies. However, the role of LSCs in physiological and pathological conditions in canine species is not well understood. Our objective was to characterize for the first time the soluble factors and the proteomic profile of the secretome and exosomes of canine LSCs (cLSCs). In addition, given the important role that fibroblasts play in the repair of the ocular surface, we evaluated the influence of the secretome and exosomes of cLSCs on their proliferation in vitro. Our results demonstrated a secretory profile of cLSCs with high concentrations of MCP-1, IL-8, VEGF-A, and IL-10, as well as significant production of exosomes. Regarding the proteomic profile, 646 total proteins in the secretome and 356 in exosomes were involved in different biological processes. Functionally, the cLSC secretome showed an inhibitory effect on the proliferation of fibroblasts in vitro, which the exosomes did not. These results open the door to new studies on the possible use of the cLSC secretome or some of its components to treat certain pathologies of the ocular surface in canine species.


Sign in / Sign up

Export Citation Format

Share Document