scholarly journals Fabrication and Characterization of Nanocomposite Hydrogel Based on Alginate/Nano-Hydroxyapatite Loaded with Linum usitatissimum Extract as a Bone Tissue Engineering Scaffold

Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 20
Author(s):  
Mahnaz Mohammadpour ◽  
Hadi Samadian ◽  
Nader Moradi ◽  
Zhila Izadi ◽  
Mahdieh Eftekhari ◽  
...  

In the current paper, we fabricated, characterized, and applied nanocomposite hydrogel based on alginate (Alg) and nano-hydroxyapatite (nHA) loaded with phenolic purified extracts from the aerial part of Linum usitatissimum (LOH) as the bone tissue engineering scaffold. nHA was synthesized based on the wet chemical technique/precipitation reaction and incorporated into Alg hydrogel as the filler via physical cross-linking. The characterizations (SEM, DLS, and Zeta potential) revealed that the synthesized nHA possess a plate-like shape with nanometric dimensions. The fabricated nanocomposite has a porous architecture with interconnected pores. The average pore size was in the range of 100–200 µm and the porosity range of 80–90%. The LOH release measurement showed that about 90% of the loaded drug was released within 12 h followed by a sustained release over 48 h. The in vitro assessments showed that the nanocomposite possesses significant antioxidant activity promoting bone regeneration. The hemolysis induction measurement showed that the nanocomposites were hemocompatible with negligible hemolysis induction. The cell viability/proliferation confirmed the biocompatibility of the nanocomposites, which induced proliferative effects in a dose-dependent manner. This study revealed the fabricated nanocomposites are bioactive and osteoactive applicable for bone tissue engineering applications.

2016 ◽  
Vol 23 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Weizhong Yang ◽  
Yong Yi ◽  
Yuan Ma ◽  
Li Zhang ◽  
Jianwen Gu ◽  
...  

AbstractNano biphasic calcium phosphate (BCP) particles were synthesized using the sol-gel method. As-prepared BCP particles were combined with poly-L-lactide (PLLA) to fabricate nano-BCP/PLLA composite scaffold through a series of processing steps containing solvent self-diffusion, hot-pressing, and particulate leaching. The composite had a suitable porous structure for bone tissue engineering scaffold. In comparison, micro-BCP/PLLA scaffold was studied as well. Nano-BCP particles were distributed homogeneously in the PLLA matrix, and much more tiny crystallites exposed on the surface of the pore wall. Due to the finer inorganic particle distribution in the PLLA phase and the larger area of the bioactive phase exposed in the pore wall surface, nano-BCP/PLLA scaffold had enhanced compressive strength, good bioactivity, and superior cell viability. A nonstoichiometric apatite layer could be rapidly formed on the surface of nano- BCP/PLLA when soaked in simulated body fluid. The MG-63 cell viability of nano-BCP/PLLA scaffold is significantly higher than that of micro-BCP/PLLA scaffold. Therefore, nano-BCP/PLLA composite may be a suitable alternative for bone tissue engineering scaffold.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhong-Kai Cui ◽  
Soyon Kim ◽  
Jessalyn J. Baljon ◽  
Benjamin M. Wu ◽  
Tara Aghaloo ◽  
...  

2007 ◽  
Vol 330-332 ◽  
pp. 1173-1176 ◽  
Author(s):  
Cai Li ◽  
Run Liang Chen ◽  
Lei Liu ◽  
Yun Feng Lin ◽  
Wei Dong Tian ◽  
...  

Poly(lactide-co-glycolide) (PLGA) and alginate(AG) are the most promising scaffolds in the bone tissue engineering for their stable mechanical characters and three-dimensional porous structure. This study aimed to assay the in vivo osteogenesis potentials by loading the autogenous bone marrow stromal cells (BMSCs) on PLGA or AG. The results suggested that PLGA and AG are both ideal bone tissue engineering scaffold. BMSCs/AG has stronger osteogenesis potentials in vivo than BMSCs/PLGA.


2016 ◽  
Vol 695 ◽  
pp. 164-169 ◽  
Author(s):  
Woradej Pichaiaukrit ◽  
Wiriya Juwattanasamran ◽  
Teerasak Damrongrungruang

Scaffolds with mechanical properties that mimic the tissue to be restored are critical to maintain the morphology and function of a scaffold after implantation and during tissue regeneration. Silk fibroin (SF), a protein from the Bombyxmori silk worm cocoon, is currently employed in the biomedical field and tissue engineering. The objective of this study was to construct three-dimensional porous silk fibroin/alpha tricalcium phosphate scaffolds for bone tissue engineering application. The scaffolds were fabricated using a solvent casting and salt leaching technique. The hybrid strain of degummed Thai silk fibroin, Nangnoi Srisaket 1 x Mor, was dissolved in hexafluoroisopropanol at 16% (w/v). Alpha tricalcium phosphate (α-TCP) was incorporated to produce 4, 8, 12, and 16 wt% solution and sucrose (particle size 250-450 μm; sucrose/silk fibroin = 8.5/1 w/w) was used as a porogen. The microstructure and pore size, calcium and phosphorus contents, and compressive modulus were evaluated. The scanning electron microscope images revealed the microstructure of scaffolds to be square shaped with continuous interconnected pores. The average pore size of the scaffolds was 265.70 + 67.45 μm. The scaffolds containing 8% (w/w) α-TCP exhibited the highest compressive modulus (64.84 + 16.65 kPa) and the highest calcium content. The results suggested that the scaffolds containing α-TCP may be a potential candidate for application in bone tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document