scholarly journals New Deoxyenhygrolides from Plesiocystis pacifica Provide Insights into Butenolide Core Biosynthesis

Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 72
Author(s):  
Joachim J. Hug ◽  
Louise Kjaerulff ◽  
Ronald Garcia ◽  
Rolf Müller

Marine myxobacteria present a virtually unexploited reservoir for the discovery of natural products with diverse biological functions and novel chemical scaffolds. We report here the isolation and structure elucidation of eight new deoxyenhygrolides (1–8) from the marine myxobacterium Plesiocystis pacifica DSM 14875T. The herein described deoxyenhygrolides C–J (1–8) feature a butenolide core with an ethyl residue at C-3 of the γ-lactone in contrast to the previously described derivatives, deoxyenhygrolides A and B, which feature an isobutyl residue at this position. The butenolide core is 2,4-substituted with a benzyl (1, 2 and 7), benzoyl (3 and 4) or benzyl alcohol (5, 6 and 8) moiety in the 2-position and a benzylidene (1–6) or benzylic hemiketal (7 and 8) in the 4-position. The description of these new deoxyenhygrolide derivatives, alongside genomic in silico investigation regarding putative biosynthetic genes, provides some new puzzle pieces on how this natural product class might be formed by marine myxobacteria.

2019 ◽  
Vol 36 (9) ◽  
pp. 1295-1312 ◽  
Author(s):  
Martina Adamek ◽  
Mohammad Alanjary ◽  
Nadine Ziemert

Here we highlight how phylogenetic analyses can be used to facilitate natural product discovery and structure elucidation.


2021 ◽  
Author(s):  
◽  
Wendy Lynne Popplewell

<p>The natural product analysis of New Zealand red algae has been neglected in recent years, and there is obvious scope for the chemical re-evaluation of New Zealand marine red algae. This study describes the isolation and structure elucidation of 12 new and eight known compounds from four different genera of red algae. To aid in this process, 34 red algae were screened in order to generate a digital HSQC spectra mask, a screening tool developed by the VUW Marine Natural Products group to identify extracts of interest for further analysis. All 34 algal extracts were screened using the HSQC mask and four extracts were identified as interesting and analysed in detail. Examination of extracts of the red algae Plocamium costatum and Ballia callitricha lead to the isolation of three known metabolites. Eleven new oxylipins, labillarides A to K, are reported from the alga Phacelocarpus labillardieri. Labillarides A to H are polyunsaturated alpha-pyrone macrocycles, all of which show similarities to the previously reported compounds isolated from southern Australian collections of the algae. Labillarides E to H are of particular interest as they represent the two diastereomeric pairs associated with variation at the C-3 and C-8 chiral centres. Labillarides I and J are related enol macrocycles while labillaride K is a furan-3-one oxylipin, all of which have biogenic significance to the macrocyclic alpha-pyrones. Labillarides A, B and I exhibit moderate cytotoxicity while labillaride C shows moderate antibacterial activity. A new nitrogenous bromophenol, colensolide A, was isolated from the alga Osmundaria colensoi along with five known bromophenols. The presence of nitrogen-containing sidechains in bromophenols is unusual but not unprecedented. The bicyclic nitrogenous moiety observed in colensolide A is proposed to be of histidine origin. Several of the known bromophenols exhibit antibacterial activity and one shows moderate cytotoxicity.</p>


2021 ◽  
Author(s):  
◽  
Wendy Lynne Popplewell

<p>The natural product analysis of New Zealand red algae has been neglected in recent years, and there is obvious scope for the chemical re-evaluation of New Zealand marine red algae. This study describes the isolation and structure elucidation of 12 new and eight known compounds from four different genera of red algae. To aid in this process, 34 red algae were screened in order to generate a digital HSQC spectra mask, a screening tool developed by the VUW Marine Natural Products group to identify extracts of interest for further analysis. All 34 algal extracts were screened using the HSQC mask and four extracts were identified as interesting and analysed in detail. Examination of extracts of the red algae Plocamium costatum and Ballia callitricha lead to the isolation of three known metabolites. Eleven new oxylipins, labillarides A to K, are reported from the alga Phacelocarpus labillardieri. Labillarides A to H are polyunsaturated alpha-pyrone macrocycles, all of which show similarities to the previously reported compounds isolated from southern Australian collections of the algae. Labillarides E to H are of particular interest as they represent the two diastereomeric pairs associated with variation at the C-3 and C-8 chiral centres. Labillarides I and J are related enol macrocycles while labillaride K is a furan-3-one oxylipin, all of which have biogenic significance to the macrocyclic alpha-pyrones. Labillarides A, B and I exhibit moderate cytotoxicity while labillaride C shows moderate antibacterial activity. A new nitrogenous bromophenol, colensolide A, was isolated from the alga Osmundaria colensoi along with five known bromophenols. The presence of nitrogen-containing sidechains in bromophenols is unusual but not unprecedented. The bicyclic nitrogenous moiety observed in colensolide A is proposed to be of histidine origin. Several of the known bromophenols exhibit antibacterial activity and one shows moderate cytotoxicity.</p>


2008 ◽  
Vol 105 (40) ◽  
pp. 15311-15316 ◽  
Author(s):  
Eric J. Dimise ◽  
Paul F. Widboom ◽  
Steven D. Bruner

Bacteria belonging to the order Actinomycetales have proven to be an important source of biologically active and often therapeutically useful natural products. The characterization of orphan biosynthetic gene clusters is an emerging and valuable approach to the discovery of novel small molecules. Analysis of the recently sequenced genome of the thermophilic actinomyceteThermobifida fuscarevealed an orphan nonribosomal peptide biosynthetic gene cluster coding for an unknown siderophore natural product.T. fuscais a model organism for the study of thermostable cellulases and is a major degrader of plant cell walls. Here, we report the isolation and structure elucidation of the fuscachelins, siderophore natural products produced byT. fusca. In addition, we report the purification and biochemical characterization of the termination module of the nonribosomal peptide synthetase. Biochemical analysis of adenylation domain specificity supports the assignment of this gene cluster as the producer of the fuscachelin siderophores. The proposed nonribosomal peptide biosynthetic pathway exhibits several atypical features, including a macrocyclizing thioesterase that produces a 10-membered cyclic depsipeptide and a nonlinear assembly line, resulting in the unique heterodimeric architecture of the siderophore natural product.


2021 ◽  
Author(s):  
Tiago F. Leao ◽  
Mingxun Wang ◽  
Ricardo da Silva ◽  
Justin J.J. van der Hooft ◽  
Anelize Bauermeister ◽  
...  

AbstractMicrobial natural products, in particular secondary or specialized metabolites, are an important source and inspiration for many pharmaceutical and biotechnological products. However, bioactivity-guided methods widely employed in natural product discovery programs do not explore the full biosynthetic potential of microorganisms, and they usually miss metabolites that are produced at low titer. As a complementary method, the use of genome-based mining in natural products research has facilitated the charting of many novel natural products in the form of predicted biosynthetic gene clusters that encode for their production. Linking the biosynthetic potential inferred from genomics to the specialized metabolome measured by metabolomics would accelerate natural product discovery programs. Here, we applied a supervised machine learning approach, the K-Nearest Neighbor (KNN) classifier, for systematically connecting metabolite mass spectrometry data to their biosynthetic gene clusters. This pipeline offers a method for annotating the biosynthetic genes for known, analogous to known and cryptic metabolites that are detected via mass spectrometry. We demonstrate this approach by automated linking of six different natural product mass spectra, and their analogs, to their corresponding biosynthetic genes. Our approach can be applied to bacterial, fungal, algal and plant systems where genomes are paired with corresponding MS/MS spectra. Additionally, an approach that connects known metabolites to their biosynthetic genes potentially allows for bulk production via heterologous expression and it is especially useful for cases where the metabolites are produced at low amounts in the original producer.SignificanceThe pace of natural products discovery has remained relatively constant over the last two decades. At the same time, there is an urgent need to find new therapeutics to fight antibiotic resistant bacteria, cancer, tropical parasites, pathogenic viruses, and other severe diseases. To spark the enhanced discovery of structurally novel and bioactive natural products, we here introduce a supervised learning algorithm (K-Nearest Neighbor) that can connect known and analogous to known, as well as MS/MS spectra of yet unknowns to their corresponding biosynthetic gene clusters. Our Natural Products Mixed Omics tool provides access to genomic information for bioactivity prediction, class prediction, substrate predictions, and stereochemistry predictions to prioritize relevant metabolite products and facilitate their structural elucidation.


Planta Medica ◽  
2017 ◽  
Vol 83 (12/13) ◽  
pp. 1044-1052 ◽  
Author(s):  
Peter Hufendiek ◽  
Simon Stölben ◽  
Stefan Kehraus ◽  
Nicole Merten ◽  
Henrik Harms ◽  
...  

AbstractNatural products from fungi, especially Ascomycota, play a major role in therapy and drug discovery. Fungal strains originating from marine habitats offer a new avenue for finding unusual molecular skeletons. Here, the marine-derived fungus Epicoccum nigrum (strain 749) was found to produce the azaphilonoid compounds acetosellin and 5′,6′-dihydroxyacetosellin. The latter is a new natural product. The biosynthesis of these polyketide-type compounds is intriguing, since two polyketide chains are assembled to the final product. Here we performed 13C labeling studies on solid cultures to prove this hypothesis for acetosellin biosynthesis.


2020 ◽  
Vol 37 (1) ◽  
pp. 29-54 ◽  
Author(s):  
Sebastian Götze ◽  
Pierre Stallforth

Bacteria of the genus Pseudomonas display a fascinating metabolic diversity. In this review, we focus our attention on the natural product class of nonribosomal lipopeptides, which help pseudomonads to colonize a wide range of ecological niches.


2013 ◽  
Vol 9 ◽  
pp. 2767-2777 ◽  
Author(s):  
Tao Wang ◽  
Patrick Rabe ◽  
Christian A Citron ◽  
Jeroen S Dickschat

Two unidentified chlorinated volatilesXandYwere detected in headspace extracts of the fungusGeniculosporium. Their mass spectra pointed to the structures of a chlorodimethoxybenzene forXand a dichlorodimethoxybenzene forY. The mass spectra of some constitutional isomers forXandYwere included in our databases and proved to be very similar, thus preventing a full structural assignment. For unambiguous structure elucidation all possible constitutional isomers forXandYwere obtained by synthesis or from commercial suppliers. Comparison of mass spectra and GC retention times rigorously established the structures of the two chlorinated volatiles. Chlorinated volatiles are not very widespread, but brominated or even iodinated volatiles are even more rare. Surprisingly, headspace extracts fromStreptomyces chartreusiscontained methyl 2-iodobenzoate, a new natural product that adds to the small family of iodinated natural products.


2019 ◽  
Vol 36 (7) ◽  
pp. 1005-1030 ◽  
Author(s):  
Laura Grauso ◽  
Roberta Teta ◽  
Germana Esposito ◽  
Marialuisa Menna ◽  
Alfonso Mangoni

A tutorial review aimed to introduce natural product chemists to the predictions of natural product configurations by ECD and OR calculations.


Sign in / Sign up

Export Citation Format

Share Document