scholarly journals Inhibition of Virus-Induced Cytokine Production from Airway Epithelial Cells by the Late Addition of Budesonide

Medicina ◽  
2020 ◽  
Vol 56 (3) ◽  
pp. 98 ◽  
Author(s):  
Tetsuya Homma ◽  
Yosuke Fukuda ◽  
Yoshitaka Uchida ◽  
Tomoki Uno ◽  
Megumi Jinno ◽  
...  

Background and objectives: Viral infection is the main cause of asthma and COPD (chronic obstructive pulmonary disease) exacerbation and accumulate inflammatory cells to airway tissue. We have reported poly I:C, a mimic product of the virus and ligand of toll-like receptor 3 (TLR3), induced inflammatory chemokines from airway epithelial cells and found prior incubation with corticosteroids diminishes the effect of TLR3 activation. In clinical practice, mild asthma is recommended as-needed budesonide (BUD) when symptoms occur following a viral infection, etc. However, many questions still surround BUD’s usefulness if taken after a virus has already infected airway tissue. The aim of this study was to investigate the inhibitory effects of BUD on inflammatory cytokines induced by viral infection. Materials and Methods: Normal human bronchial epithelial (NHBE) cells were stimulated with poly I:C or infected with human rhinovirus-16 (HRV16) and BUD was added after the initial stimulation. Expression of both thymic stromal lymphopoietin (TSLP) and CCL26/eotaxin-3 was quantified by real-time RT-PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Knockdown study was performed. Results: Pre-or post-incubation with BUD inhibited both poly I:C- and HRV16-induced mRNAs and proteins of both thymic stromal lymphopoietin (TSLP) and CCL26 with significance. Knockdown of the glucocorticoid receptor diminished these effects of BUD. Under the same conditions of BUD’s experiment, post-incubation with neither fluticasone propionate nor dexamethasone suppressed expression of both TSLP and CCL26, which induced by poly I:C. Conclusion: Post-addition of BUD inhibited the virus-induced TSLP and CCL26 from the airway epithelial cells. These results suggest that inhalation of BUD after viral infection has beneficial effects on asthma. Conclusion: Late addition of BUD may benefit among patient with viral infection and type 2 allergic airway disease such as asthma.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Mutsuo Yamaya

Infection with respiratory viruses, including rhinoviruses, influenza virus, and respiratory syncytial virus, exacerbates asthma, which is associated with processes such as airway inflammation, airway hyperresponsiveness, and mucus hypersecretion. In patients with viral infections and with infection-induced asthma exacerbation, inflammatory mediators and substances, including interleukins (ILs), leukotrienes and histamine, have been identified in the airway secretions, serum, plasma, and urine. Viral infections induce an accumulation of inflammatory cells in the airway mucosa and submucosa, including neutrophils, lymphocytes and eosinophils. Viral infections also enhance the production of inflammatory mediators and substances in airway epithelial cells, mast cells, and other inflammatory cells, such as IL-1, IL-6, IL-8, GM-CSF, RANTES, histamine, and intercellular adhesion molecule-1. Viral infections affect the barrier function of the airway epithelial cells and vascular endothelial cells. Recent reports have demonstrated augmented viral production mediated by an impaired interferon response in the airway epithelial cells of asthma patients. Several drugs used for the treatment of bronchial asthma reduce viral and pro-inflammatory cytokine release from airway epithelial cells infected with viruses. Here, I review the literature on the pathogenesis of the viral infection-induced exacerbation of asthma and on the modulation of viral infection-induced airway inflammation.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yifan Chen ◽  
Rakesh K. Kumar ◽  
Paul S. Thomas ◽  
Cristan Herbert

Chronic obstructive pulmonary disease (COPD) is characterized by airway inflammation associated with a Th1/17-biased cytokine environment. Acute exacerbations of COPD (AECOPD) are most often triggered by respiratory infections, which elicit an exaggerated inflammatory response in these patients, via poorly defined mechanisms. We investigated the responses of airway epithelial cells (AECs) to infective stimuli in COPD and the effects of the Th1/17-biased environment on these responses. Cytokine expression was assessed following exposure to virus-like stimuli (poly I:C or imiquimod) or bacterial LPS. The effects of pretreatment with Th1/17 cytokines were evaluated in both primary AECs and the Calu-3 AEC cell line. We found that poly I:C induced increased expression of the proinflammatory cytokines IL1β, IL6, CXCL8, and TNF and IFN-β1 in AECs from both control subjects and COPD patients. Expression of IL1β in response to all 3 stimuli was significantly enhanced in COPD AECs. Primary AECs pretreated with Th1/17 cytokines exhibited enhanced expression of mRNA for proinflammatory cytokines in response to poly I:C. Similarly, Calu-3 cells responded to virus-like/bacterial stimuli with increased expression of proinflammatory cytokines, and a Th1/17 environment significantly enhanced their expression. Furthermore, increased expression of pattern recognition receptors for viruses (TLR3, TLR7, IFIH1, and DDX58) was induced by Th1/17 cytokines, in both primary AECs and Calu-3 cells. These findings suggest that the Th1/17-biased environment associated with COPD may enhance the proinflammatory cytokine response of AECs to viral and bacterial infections and that increased signaling via upregulated receptors may contribute to exaggerated inflammation in virus-induced AECOPD.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gemma Laura ◽  
Yi Liu ◽  
Kieran Fernandes ◽  
Saffron A. G. Willis-Owen ◽  
Kazuhiro Ito ◽  
...  

Abstract Background Oroscomucoid 3 (ORMDL3) has been linked to susceptibility of childhood asthma and respiratory viral infection. Polyinosinic-polycytidylic acid (poly I:C) is a synthetic analog of viral double-stranded RNA, a toll-like receptor 3 (TLR3) ligand and mimic of viral infection. Methods To investigate the functional role of ORMDL3 in the poly I:C-induced inflammatory response in airway epithelial cells, ORMDL3 knockdown and over-expression models were established in human A549 epithelial cells and primary normal human bronchial epithelial (NHBE) cells. The cells were stimulated with poly I:C or the Th17 cytokine IL-17A. IL-6 and IL-8 levels in supernatants,  mRNA levels of genes in the TLR3 pathway and inflammatory response from cell pellets were measured. ORMDL3 knockdown models in A549 and BEAS-2B epithelial cells were then infected with live human rhinovirus (HRV16) followed by IL-6 and IL-8 measurement. Results ORMDL3 knockdown and over-expression had little influence on the transcript levels of TLR3 in airway epithelial cells. Time course studies showed that ORMDL3-deficient A549 and NHBE cells had an attenuated IL-6 and IL-8 response to poly I:C stimulation. A549 and NHBE cells over-expressing ORMDL3 released relatively more IL-6 and IL-8 following poly I:C stimulation. IL-17A exhibited a similar inflammatory response in ORMDL3 knockdown and over-expressing cells, but co-stimulation of poly I:C and IL-17A did not significantly enhance the IL-6 and IL-8 response. Transcript abundance of IFNB following poly I:C stimulation was not significantly altered by ORMDL3 knockdown or over-expression. Dampening of the IL-6 response by ORMDL3 knockdown was confirmed in HRV16 infected BEAS-2B and A549 cells. Conclusions ORMDL3 regulates the viral inflammatory response in airway epithelial cells via mechanisms independent of the TLR3 pathway.


2015 ◽  
Vol 95 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Xiu-qin Yang ◽  
Liang Wang ◽  
Hai-tao Li ◽  
Di Liu

Yang, X.-q., Wang, L., Li, H.-t. and Liu, D. 2015. Immune responses of porcine airway epithelial cells to poly(I:C), a synthetic analogue of viral double-stranded RNA. Can. J. Anim. Sci. 95: 13–20. Swine respiratory disease (SRD) is one of the most economically important diseases affecting the pig industry. The main infectious agents that cause SRD are viruses, but the molecular pathogenesis of viral SRD has not been extensively studied. Here, using digital gene expression tag profiling, the global transcriptional responses to poly(I:C), a synthetic analogue of viral double-stranded RNA, was analyzed in porcine airway epithelial cells (PAECs). The profiling analysis revealed numerous differentially expressed genes (DEGs), including unknown sequences in the porcine nucleotide databases. Gene ontology enrichment analysis showed that DEGs were mainly enriched in response to stress (GO: 0006950), of which, defense response is one sub-process. Poly(I:C) challenge induced a general inflammation response as indicated by marked upregulation of a variety of pathogen recognition receptors, interferon-stimulated genes, proinflammatory cytokines, and chemokines, together with the significant downregulation of anti-inflammatory molecules. Furthermore, the antiapoptotic pathway was triggered, as demonstrated by the significant suppression of molecules involved in the induction of apoptosis, together with the significant stimulation of putative inhibitor of apoptosis. The results indicate that PAECs initiated defense against poly(I:C) challenge through the inflammation responses, whereas poly(I:C) can utilize antiapoptotic pathway to evade host defense.


2018 ◽  
Vol 314 (3) ◽  
pp. L514-L527 ◽  
Author(s):  
Qun Wu ◽  
Di Jiang ◽  
Niccolette R. Schaefer ◽  
Laura Harmacek ◽  
Brian P. O’Connor ◽  
...  

Human rhinovirus (HRV) is the most common virus contributing to acute exacerbations of chronic obstructive pulmonary disease (COPD) nearly year round, but the mechanisms have not been well elucidated. Recent clinical studies suggest that high levels of growth differentiation factor 15 (GDF15) protein in the blood are associated with an increased yearly rate of all-cause COPD exacerbations. Therefore, in the current study, we investigated whether GDF15 promotes HRV infection and virus-induced lung inflammation. We first examined the role of GDF15 in regulating host defense and HRV-induced inflammation using human GDF15 transgenic mice and cultured human GDF15 transgenic mouse tracheal epithelial cells. Next, we determined the effect of GDF15 on viral replication, antiviral responses, and inflammation in human airway epithelial cells with GDF15 knockdown and HRV infection. Finally, we explored the signaling pathways involved in airway epithelial responses to HRV infection in the context of GDF15. Human GDF15 protein overexpression in mice led to exaggerated inflammatory responses to HRV, increased infectious particle release, and decreased IFN-λ2/3 (IL-28A/B) mRNA expression in the lung. Moreover, GDF15 facilitated HRV replication and inflammation via inhibiting IFN-λ1/IL-29 protein production in human airway epithelial cells. Lastly, Smad1 cooperated with interferon regulatory factor 7 (IRF7) to regulate airway epithelial responses to HRV infection partly via GDF15 signaling. Our results reveal a novel function of GDF15 in promoting lung HRV infection and virus-induced inflammation, which may be a new mechanism for the increased susceptibility and severity of respiratory viral (i.e., HRV) infection in cigarette smoke-exposed airways with GDF15 overproduction.


2021 ◽  
Vol 134 (4) ◽  
pp. jcs257162 ◽  
Author(s):  
Corrine R. Kliment ◽  
Jennifer M. K. Nguyen ◽  
Mary Jane Kaltreider ◽  
YaWen Lu ◽  
Steven M. Claypool ◽  
...  

ABSTRACTAirway hydration and ciliary function are critical to airway homeostasis and dysregulated in chronic obstructive pulmonary disease (COPD), which is impacted by cigarette smoking and has no therapeutic options. We utilized a high-copy cDNA library genetic selection approach in the amoeba Dictyostelium discoideum to identify genetic protectors to cigarette smoke. Members of the mitochondrial ADP/ATP transporter family adenine nucleotide translocase (ANT) are protective against cigarette smoke in Dictyostelium and human bronchial epithelial cells. Gene expression of ANT2 is reduced in lung tissue from COPD patients and in a mouse smoking model, and overexpression of ANT1 and ANT2 resulted in enhanced oxidative respiration and ATP flux. In addition to the presence of ANT proteins in the mitochondria, they reside at the plasma membrane in airway epithelial cells and regulate airway homeostasis. ANT2 overexpression stimulates airway surface hydration by ATP and maintains ciliary beating after exposure to cigarette smoke, both of which are key functions of the airway. Our study highlights a potential for upregulation of ANT proteins and/or of their agonists in the protection from dysfunctional mitochondrial metabolism, airway hydration and ciliary motility in COPD.This article has an associated First Person interview with the first author of the paper.


Sign in / Sign up

Export Citation Format

Share Document