scholarly journals Cardiac Optical Mapping in Situ in Swine Models: A View of the Current Situation

Medicina ◽  
2020 ◽  
Vol 56 (11) ◽  
pp. 620
Author(s):  
Irma Martišienė ◽  
Regina Mačianskienė ◽  
Rimantas Benetis ◽  
Jonas Jurevičius

Optical mapping is recognized as a promising tool for the registration of electrical activity in the heart. Most cardiac optical mapping experiments are performed in ex vivo isolated heart models. However, the electrophysiological properties of the heart are highly influenced by the autonomic nervous system as well as humoral regulation; therefore, in vivo investigations of heart activity in large animals are definitely preferred. Furthermore, such investigations can be considered the last step before clinical application. Recently, two comprehensive studies have examined optical mapping approaches for pig hearts in situ (in vivo), likely advancing the methodological capacity to perform complex electrophysiological investigations of the heart. Both studies had the same aim, i.e., to develop high-spatiotemporal-resolution optical mapping suitable for registration of electrical activity of pig heart in situ, but the methods chosen were different. In this brief review, we analyse and compare the results of recent studies and discuss their translational potential for in situ cardiac optical mapping applications in large animals. We focus on the modes of blood circulation that are employed, the use of different voltage-sensitive dyes and their loading procedures, and ways of eliminating contraction artefacts. Finally, we evaluate the possible scenarios for optical mapping (OM) application in large animals in situ and infer which scenario is optimal.

2018 ◽  
Vol 115 (6) ◽  
pp. 1052-1066 ◽  
Author(s):  
Elisabeth Kaiser ◽  
Qinghai Tian ◽  
Michael Wagner ◽  
Monika Barth ◽  
Wenying Xian ◽  
...  

Abstract Aims Signalling via Gq-coupled receptors is of profound importance in many cardiac diseases such as hypertrophy and arrhythmia. Nevertheless, owing to their widespread expression and the inability to selectively stimulate such receptors in vivo, their relevance for cardiac function is not well understood. We here use DREADD technology to understand the role of Gq-coupled signalling in vivo in cardiac function. Methods and results We generated a novel transgenic mouse line that expresses a Gq-coupled DREADD (Dq) in striated muscle under the control of the muscle creatine kinase promotor. In vivo injection of the DREADD agonist clozapine-N-oxide (CNO) resulted in a dose-dependent, rapid mortality of the animals. In vivo electrocardiogram data revealed severe cardiac arrhythmias including lack of P waves, atrioventricular block, and ventricular tachycardia. Following Dq activation, electrophysiological malfunction of the heart could be recapitulated in the isolated heart ex vivo. Individual ventricular and atrial myocytes displayed a positive inotropic response and arrhythmogenic events in the absence of altered action potentials. Ventricular tissue sections revealed a strong co-localization of Dq with the principal cardiac connexin CX43. Western blot analysis with phosphor-specific antibodies revealed strong phosphorylation of a PKC-dependent CX43 phosphorylation site following CNO application in vivo. Conclusion Activation of Gq-coupled signalling has a major impact on impulse generation, impulse propagation, and coordinated impulse delivery in the heart. Thus, Gq-coupled signalling does not only modulate the myocytes’ Ca2+ handling but also directly alters the heart’s electrophysiological properties such as intercellular communication. This study greatly advances our understanding of the plethora of modulatory influences of Gq signalling on the heart in vivo.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Irma Martišienė ◽  
Dainius Karčiauskas ◽  
Antanas Navalinskas ◽  
Regina Mačianskienė ◽  
Audrius Kučinskas ◽  
...  

Abstract The emergence of optical imaging has revolutionized the investigation of cardiac electrical activity and associated disorders in various cardiac pathologies. The electrical signals of the heart and the propagation pathways are crucial for elucidating the mechanisms of various cardiac pathological conditions, including arrhythmia. The synthesis of near-infrared voltage-sensitive dyes and the voltage sensitivity of the FDA-approved dye Cardiogreen have increased the importance of optical mapping (OM) as a prospective tool in clinical practice. We aimed to develop a method for the high-spatiotemporal-resolution OM of the large animal hearts in situ using di-4-ANBDQBS and Cardiogreen under patho/physiological conditions. OM was adapted to monitor cardiac electrical behaviour in an open-chest pig heart model with physiological or artificial blood circulation. We detail the methods and display the OM data obtained using di-4-ANBDQBS and Cardiogreen. Activation time, action potential duration, repolarization time and conduction velocity maps were constructed. The technique was applied to track cardiac electrical activity during regional ischaemia and arrhythmia. Our study is the first to apply high-spatiotemporal-resolution OM in the pig heart in situ to record cardiac electrical activity qualitatively under artificial blood perfusion. The use of an FDA-approved voltage-sensitive dye and artificial blood perfusion in a swine model, which is generally accepted as a valuable pre-clinical model, demonstrates the promise of OM for clinical application.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3678
Author(s):  
Vera Chernonosova ◽  
Alexandr Gostev ◽  
Ivan Murashov ◽  
Boris Chelobanov ◽  
Andrey Karpenko ◽  
...  

We examined the physicochemical properties and the biocompatibility and hemocompatibility of electrospun 3D matrices produced using polyurethane Pellethane 2363-80A (Pel-80A) blends Pel-80A with gelatin or/and bivalirudin. Two layers of vascular grafts of 1.8 mm in diameter were manufactured and studied for hemocompatibility ex vivo and functioning in the infrarenal position of Wistar rat abdominal aorta in vivo (n = 18). Expanded polytetrafluoroethylene (ePTFE) vascular grafts of similar diameter were implanted as a control (n = 18). Scaffolds produced from Pel-80A with Gel showed high stiffness with a long proportional limit and limited influence of wetting on mechanical characteristics. The electrospun matrices with gelatin have moderate capacity to support cell adhesion and proliferation (~30–47%), whereas vascular grafts with bivalirudin in the inner layer have good hemocompatibility ex vivo. The introduction of bivalirudin into grafts inhibited platelet adhesion and does not lead to a change hemolysis and D-dimers concentration. Study in vivo indicates the advantages of Pel-80A grafts over ePTFE in terms of graft occlusion, calcification level, and blood velocity after 6 months of implantation. The thickness of neointima in Pel-80A–based grafts stabilizes after three months (41.84 ± 20.21 µm) and does not increase until six months, demonstrating potential for long-term functioning without stenosis and as a suitable candidate for subsequent preclinical studies in large animals.


2018 ◽  
Vol 68 (16) ◽  
pp. 965-977 ◽  
Author(s):  
Hossein Kamali ◽  
Elham Khodaverdi ◽  
Farzin Hadizadeh ◽  
Seyed Ahmad Mohajeri ◽  
Younes Kamali ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christian E. Anderson ◽  
Mette Johansen ◽  
Bernadette O. Erokwu ◽  
He Hu ◽  
Yuning Gu ◽  
...  

AbstractSynchronous assessment of multiple MRI contrast agents in a single scanning session would provide a new “multi-color” imaging capability similar to fluorescence imaging but with high spatiotemporal resolution and unlimited imaging depth. This multi-agent MRI technology would enable a whole new class of basic science and clinical MRI experiments that simultaneously explore multiple physiologic/molecular events in vivo. Unfortunately, conventional MRI acquisition techniques are only capable of detecting and quantifying one paramagnetic MRI contrast agent at a time. Herein, the Dual Contrast – Magnetic Resonance Fingerprinting (DC-MRF) methodology was extended for in vivo application and evaluated by simultaneously and dynamically mapping the intra-tumoral concentration of two MRI contrast agents (Gd-BOPTA and Dy-DOTA-azide) in a mouse glioma model. Co-registered gadolinium and dysprosium concentration maps were generated with sub-millimeter spatial resolution and acquired dynamically with just over 2-minute temporal resolution. Mean tumor Gd and Dy concentration measurements from both single agent and dual agent DC-MRF studies demonstrated significant correlations with ex vivo mass spectrometry elemental analyses. This initial in vivo study demonstrates the potential for DC-MRF to provide a useful dual-agent MRI platform.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
S Glatstein ◽  
M Ghiringhelli ◽  
L Maizels ◽  
E Heller ◽  
E Maor ◽  
...  

Abstract Background One of the major barriers to an improved mechanistic understanding of atrial fibrillation (AF), and thus in the pipeline of drug development, has been a lack of appropriate tissue models, especially in small animals. Aim We propose an advanced anatomical ex-vivo model based on rat atria for acute assessment of AF susceptibility. This novel model could yield a better understanding of arrhythmia mechanisms as well as the development of potential therapeutic strategies for the prevention or termination of atrial arrhythmias. Methods Wistar rats atria (N=25) were isolated, flattened and pinned to a custom-made silicon plate. Atria were superfused with an oxygenized Tyrode's solution. Tissues were then loaded with a voltage-sensitive dye and mapped using a high-resolution optical mapping system. AF was induced with 1uM carbamylcholine (N=23) coupled with pacing maneuvers and treated with 30uM Vernakalant (N=10) or 10uM Flecainide (N=10). Finally, the feasibility of a new ablation technique (electroporation) was evaluated. Results Optical mapping results suggested that the superfusion procedure led to a fast atrial recovery. Sinus activity was conserved for all atria for a long period. All the anatomical landmarks were clearly visualized. The acquired optical signals were analyzed during sinus rhythm and pacing, which allowed the creation of detailed activation maps and measurements of action potential duration (APD) and conduction velocity (CV) at different pacing rates. The resulting APD restitution curves revealed electrical excitation at high pacing rates (cycle length between 50ms and 300ms) with a relatively flattened curve. AF was successfully induced and optically mapping confirmed the presence of reentrant activity. AF was successfully treated using Vernacalant and Flecainide. Finally, we demonstrated the feasibility of a new ablation approach (electroporation) for creation of a continuous linear lesion serving as a functional block. Conclusion The isolated superfused atria model, coupled with voltage-sensitive dyes, can be utilized for long-term high-resolution functional imaging of the atria during sinus rhythm, pacing and arrhythmogenic activity. This allows the study of the atrial electrophysiological properties, the mechanisms involved in AF initiation, perpetuation, and termination as well as the study of drug and new ablation modalities. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – EU funding. Main funding source(s): European Research Council (ERC) Spontaneous activation of isolated atria


2002 ◽  
Vol 227 (8) ◽  
pp. 609-615 ◽  
Author(s):  
Weihong Pan ◽  
Beka Solomon ◽  
Lawrence M. Maness ◽  
Abba J. Kastin

Amyloid-β peptides (Aβ) play an important role in the pathophysiology of dementia of the Alzheimer's type and in amyloid angiopathy. Aβ outside the CNS could contribute to plaque formation in the brain where its entry would involve interactions with the blood-brain barrier (BBB). Effective antibodies to Aβ have been developed in an effort to vaccinate against Alzheimer's disease. These antibodies could interact with Aβ in the peripheral blood, block the passage of Aβ across the BBB, or prevent Aβ deposition within the CNS. To determine whether the blocking antibodies act at the BBB level, we examined the influx of radiolabeled Aβ (125I-Aβ1-40) into the brain after ex-vivo incubation with the antibodies. Antibody mAb3D6 (élan Company) reduced the blood-to-brain influx of Aβ after iv bolus injection. It also significantly decreased the accumulation of Aβ in brain parenchyma. To confirm the in-vivo study and examine the specificity of mAb3D6, in-situ brain perfusion in serum-free buffer was performed after incubation of 125I-Aβ1-40 with another antibody mAbmc1 (DAKO Company). The presence of mAbmc1 also caused significant reduction of the influx of Aβ into the brain after perfusion. Therefore, effective antibodies to Aβ can reduce the influx of Aβ1-40 into the brain.


Author(s):  
Michael Murninkas ◽  
Roni Gillis ◽  
Danielle I Lee ◽  
Sigal Elyagon ◽  
Nikhil Suresh Bhandarkar ◽  
...  

The complex pathophysiology of atrial fibrillation (AF) is governed by multiple risk factors in ways that are still elusive. Basic electrophysiological properties including atrial effective refractory period (AERP) and conduction velocity are major factors determining the susceptibility of the atrial myocardium to AF. Although there is a great need for affordable animal models in this field of research, in-vivo rodent studies are limited by technical challenges. Recently, we introduced an implantable system for long-term assessment of AF susceptibility in ambulatory rats. However, technical considerations did not allow us to perform concomitant supraventricular electrophysiology measurements. Here, we designed a novel quadripolar-electrode specifically adapted for comprehensive atrial studies in ambulatory rats. Electrodes were fabricated from medical-grade silicone, four platinum-iridium poles and stainless steel fixating pins. Initial quality validation was performed ex-vivo, followed by implantation in adult rats and repeated electrophysiological studies 1, 4 and 8 weeks post implantation. Capture threshold was stable. Baseline AERP values (38.1±2.3 and 39.5±2.0 using 70ms and 120ms S1-S1 cycle lengths, respectively) confirmed the expected absence of rate-adaptation in the unanesthetized state and validated our prediction that markedly higher values reported under anesthesia are non-physiological. Evaluation of AF substrate in parallel with electrophysiological parameters validated our recent finding of a gradual increase in AF susceptibility over-time and demonstrated that this phenomenon is associated with an electrical remodeling process characterized by AERP shortening. Our findings indicate that the miniature quadripolar-electrode is a potent new tool, which opens a window of opportunities for better utilization of rats in AF research.


Sign in / Sign up

Export Citation Format

Share Document