scholarly journals Theoretical Analysis of the Stationary Transport of 1:1 Salt Ions in a Cross-Section of a Desalination Channel, Taking into Account the Non-Catalytic Dissociation/Recombination Reaction of Water Molecules

Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 342
Author(s):  
Makhamet Urtenov ◽  
Vitaly Gudza ◽  
Natalia Chubyr ◽  
Inna Shkorkina

In electromembrane systems, the theoretical study of salt ion transport usually uses mathematical models of salt ion transport in the depleted diffusion layer of ion-exchange membranes. This study uses a one-dimensional mathematical model of salt ion transport in a cross-section of a desalination channel formed by anion-exchange and cation-exchange membranes, taking into account an effect of a dissociation/recombination reaction of water molecules. The reaction on the one hand leads to an overlimiting mass transfer due to the effect of exaltation of the limiting current. On the other hand, an appearance of new electric charge carriers (hydrogen and hydroxyl ions) can reduce the space charge that occurs in membranes and suppress an electroconvective mechanism of overlimiting transport. Thus, there is a problem of studying these phenomena together, taking into account their mutual influence, and this article is devoted to the solution of this problem. Theoretically, using a method of mathematical modeling and numerical research, main regularities are established; in particular, it is shown that the dissociation/recombination reaction of water molecules does not lead to the destruction of the double electric layer at the membranes, but also creates a new double electric layer in the middle of the desalination channel. Thus, the space charge and the dissociation/recombination reaction significantly affect each other and simultaneously the transport of salt ions.

2021 ◽  
Vol 2131 (2) ◽  
pp. 022109
Author(s):  
A Kovalenko ◽  
V Gudza ◽  
M Urtenov ◽  
N Chubyr

Abstract The article formulates a two-dimensional mathematical model of non-stationary transport of 1: 1 electrolyte in a potentiodynamic mode, taking into account electroconvection and non-catalytic dissociation / recombination reaction of water molecules in electromembrane systems, which are considered as the desalting channel of an electrodialysis device. The model is described by a system of coupled Navier-Stokes and Nernst-Planck-Poisson equations taking into account the electric force and physically justified boundary conditions. The article establishes the basic laws of mass transport, taking into account the dissociation / recombination of water molecules. It was shown for the first time that a double electric layer of hydrogen and hydroxyl ions arises in the recombination region. It is shown that between the region of recombination and quasi-equilibrium regions of space charge there are regions of electroneutrality and equilibrium with an almost linear distribution of concentrations. It was found that even under prelimiting, but close enough to the limiting current, modes, non-catalytic dissociation of water molecules in the quasi-equilibrium region of space charge occurs so intensely that the concentration of hydrogen and hydroxyl ions becomes comparable to the concentration of potassium and chlorine ions. At overlimiting current densities, due to the appearance of an extended space charge region and intense dissociation of water molecules in this region, as well as an increase in the electric double layer in the recombination region, the space charge and the dissociation / recombination reaction of water molecules significantly affect each other. In turn, this has a decisive effect on electroconvection and, accordingly, on the transport of salt ions.


2019 ◽  
Vol 19 (3) ◽  
pp. 268-280
Author(s):  
N. O. Chubyr ◽  
A. V. Kovalenko ◽  
M. Kh. Urtenov ◽  
A. I. Sukhinov ◽  
V. A. Gudza

Introduction. The paper presents a theoretical study on binary salt ion transport considering the water dissociation/recombination reaction. The work objectives are as follows: to build a mathematical model; to develop an algorithm for the numerical solution to the boundary value problem corresponding to the mathematical model; to work out the similarity theory including the transition to a dimensionless form using characteristic quantities; to determine a physical meaning of trivial similarity criteria; to find nontrivial similarity criteria; to build and analyze the volt-ampere characteristic (VAC).Materials and Methods. The theoretical study and numerical analysis of the transport of binary salt ions consider the dissociation/recombination reaction of water. In this case, the heat transfer equation and the mathematical model of electrodiffusion of four types of ions simultaneously (two salt ions, as well as ????+ and ????????−ions) in the diffusion layer of electromembrane systems with a perfectly selective membrane are used. For the first-order differential equations, a singularly perturbed boundary-value problem is set. In the equation for the electric field, the right side is independent of the intensity. In the numerical solution to the digitized system of equations by the Newton-Kantorovich method, this causes the stability of the method. In this regard, the boundary-value problem is reduced for numerical solution: a transition to a system of the second-order equations is provided, and the missing boundary conditions for the electric field strength are calculated.Research Results. A new mathematical model, a numerical algorithm to solve a boundary value problem, and software are developed. A numerical analysis is carried out, and fundamental laws of the transport of salt ions are determined considering the dissociation/recombination reaction of water molecules, temperature effects, and Joule heating. The VAC is built and analyzed.Discussion and Conclusions. The transport of binary salt ions through a diffusion layer near a cation exchange membrane is considered. A mathematical model of this process is proposed. It takes into account the temperature effects due to dissociation/recombination reactions of water molecules and Joule heating in a solution. The basic laws of the transport of salt ions are established considering the dissociation/recombination reaction of water molecules and temperature effects. The temperature effects of the dissociation/recombination reaction and the Joule heating in the electroneutrality region (ENR) are almost imperceptible (with the exception of the recombination region, RR). The Joule heating in the space-charge region (SCR) is by two orders of magnitude larger than the cooling effect of the water dissociation reaction. Upon recombination, approximately the same heat is released in the RR as during Joule heating in the expanded SCR. However, due to the small size of the RR, the effect of this heat is imperceptible. Therefore, we can assume that there is only one heat source at the interface in the SCR, which, due to its noticeable size, causes a significant increase in temperature in the entire diffusion layer. It follows that the emergence and development of gravitational convection is possible. General conclusions, following from the results obtained, open up the possibility of intensifying the process of transport of salt ions in the electrodialysis machines.


2020 ◽  
Vol 224 ◽  
pp. 02009
Author(s):  
V Gudza ◽  
M Urtenov ◽  
N Chubyr ◽  
I Shkorkina

In electromembrane systems, a theoretical study of salt ion transfer usually uses mathematical models of salt ion transfer in the depleted diffusion layer of ion-exchange membranes. In this paper, a new mathematical model of ion transport in the cross-section of the desalination channel formed by two ion-exchange membranes – anion-exchange (AEM) and cation-exchange (CEM), taking into account the non-catalytic dissociation/recombination reaction of water molecules. The model is a boundary value problem for a non-stationary system of Nernst-Planck and Poisson equations. A numerical analysis of the boundary value problem is performed and the main regularities of the 1:1 salt ion transfer process are established, in particular, the occurrence and development of space charge breakdown is shown. The interaction of the space charge and the noncatalytic dissociation/recombination reaction of water molecules are theoretically investigated.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-755-C7-756
Author(s):  
N. S. Kopeika ◽  
T. Karcher ◽  
C.S. Ih.

2021 ◽  
Vol 9 (1) ◽  
pp. 88
Author(s):  
Marco Petti ◽  
Sara Pascolo ◽  
Silvia Bosa ◽  
Nadia Busetto

The prism of the Lignano tidal inlet was approximately constant over the last forty years, although the section width has halved. This has led to questions concerning the factors that most influence the tidal prism, and on the applicability of the well-known A–P relationship. A conceptual scheme of the sea–channel–lagoon system has been used to perform a sensitivity analysis of different parameters that characterize both the basin and the inlet cross-section. A 2D hydrodynamic model has been applied to evaluate the prism and compare it to the one derived by a static method, which is the basis of the analytical derivation of the A–P linkage. Three regimes have been found in the prism variability as a function of the basin extension: a linear static regime between prism and basin area; an asymptotic regime in which the prism depends only on the basin bottom friction; and an intermediate one. In addition, the roles of the inlet and channel sizes on the prism value have been investigated. The results, compared to the empirical relationships between the prism and the inlet cross-section, show that a variation in the cross-sectional area does not always corresponds to a change in tidal prism.


Author(s):  
Chen-Wei Chang ◽  
Chien-Wei Chu ◽  
Yen-Shao Su ◽  
Li-Hsien Yeh

Capturing osmotic energy from a salinity gradient through an ion-selective membrane is regarded as one of the renewable clean energy resources to solve the increasing global energy demands. However, suffering...


2019 ◽  
Author(s):  
Zoi Salta ◽  
Agnie M. Kosmas ◽  
Oscar Ventura ◽  
Vincenzo Barone

<p>The dehalogenation of 2-chloroethanol (2ClEtOH) in gas phase with and without participation of catalytic water molecules has been investigated using methods rooted into the density functional theory. The well-known HCl elimination leading to vinyl alcohol (VA) was compared to the alternative elimination route towards oxirane and shown to be kinetically and thermodynamically more favorable. However, the isomerization of VA to acetaldehyde in the gas phase, in the absence of water, was shown to be kinetically and thermodynamically less favorable than the recombination of VA and HCl to form the isomeric 1-chloroethanol (1ClEtOH) species. This species is more stable than 2ClEtOH by about 6 kcal mol<sup>-1</sup>, and the reaction barrier is 22 kcal mol<sup>-1</sup> vs 55 kcal mol<sup>-1</sup> for the direct transformation of VA to acetaldehyde. In a successive step, 1ClEtOH can decompose directly to acetaldehyde and HCl with a lower barrier (29 kcal mol<sup>-1</sup>) than that of VA to the same products (55 kcal mol<sup>-1</sup>). The calculations were repeated using a single ancillary water molecule (W) in the complexes 2ClEtOH_W and 1ClEtOH_W. The latter adduct is now more stable than 2ClEtOH_W by about 8 kcal mol<sup>-1</sup>, implying that the water molecule increased the already higher stability of 1ClEtOH in the gas phase. However, this catalytic water molecule lowers dramatically the barrier for the interconversion of VA to acetaldehyde (from 55 to 6 kcal mol<sup>-1</sup>). This barrier is now smaller than the one for the conversion to 1ClEtOH (which also decreases, but not so much, from 22 to 12 kcal mol<sup>-1</sup>). Thus, it is concluded that while 1ClEtOH may be a plausible intermediate in the gas phase dehalogenation of 2ClEtOH, it is unlikely that it plays a major role in water complexes (or, by inference, aqueous solution). It is also shown that neither in the gas phase nor in the cluster with one water molecule, the oxirane path is competitive with the VA alcohol path.</p>


Sign in / Sign up

Export Citation Format

Share Document