scholarly journals Special Issue: Dynamics and Nano-Organization in Plasma Membranes

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 828
Author(s):  
Yenisleidy de las Mercedes Zulueta Díaz ◽  
Eva Christensen Arnspang

Cell membranes develop extraordinarily complex lipids and proteins geared to perform functions required by cells. [...]

Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1083 ◽  
Author(s):  
Justyna Widomska ◽  
Witold K. Subczynski

The plasma membranes of the human lens fiber cell are overloaded with cholesterol that not only saturates the phospholipid bilayer of these membranes but also leads to the formation of pure cholesterol bilayer domains. Cholesterol level increases with age, and for older persons, it exceeds the cholesterol solubility threshold, leading to the formation of cholesterol crystals. All these changes occur in the normal lens without too much compromise to lens transparency. If the cholesterol content in the cell membranes of other organs increases to extent where cholesterol crystals forma, a pathological condition begins. In arterial cells, minute cholesterol crystals activate inflammasomes, induce inflammation, and cause atherosclerosis development. In this review, we will indicate possible factors that distinguish between beneficial and negative cholesterol action, limiting cholesterol actions to those performed through cholesterol in cell membranes and by cholesterol crystals.


1988 ◽  
Vol 255 (3) ◽  
pp. 983-990 ◽  
Author(s):  
B E Wadzinski ◽  
M F Shanahan ◽  
R B Clark ◽  
A E Ruoho

The glucose transporter has been identified in a variety of mammalian cell membranes using a photoactivatable carrier-free radioiodinated derivative of forskolin, 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetylforskoli n ([125I]IAPS-forskolin) at 1-3 nM. The membranes that were photolabelled with [125I]IAPS-forskolin were human placental membranes, rat cortical and cerebellar synaptic membranes, rat cardiac sarcolemmal membranes, rat adipocyte plasma membranes, smooth-muscle membranes, and S49 wild-type (WT) lymphoma-cell membranes. The glucose transporter in plasma membranes prepared from the insulin-responsive rat cardiac sarcolemmal cells, rat adipocytes and smooth-muscle cells were determined to be approx. 45 kDa by SDS/polyacrylamide-gel electrophoresis (PAGE). Photolysis of human placental membranes, rat cortical and cerebellar synaptic membranes, and WT lymphoma membranes with [125I]-IAPS-forskolin, followed by SDS/PAGE, indicated specific derivatization of a broad band (43-55 kDa) in placental membranes and a narrower band (approx. 45 kDa) in synaptic membranes and WT lymphoma membranes. Digestion of the [125I]IAPS-forskolin-labelled placental and WT lymphoma membranes with endo-beta-galactosidase showed a reduction in the apparent molecular mass of the radiolabelled band to approx. 40 kDa. The membranes that were photolabelled with [125I]IAPS-forskolin and trypsin-treated produced a radiolabelled proteolytic fragment with an apparent molecular mass of 18 kDa. [125I]IAPS-forskolin is a highly effective probe for identifying low levels of glucose transporters in mammalian tissues.


Reproduction ◽  
2005 ◽  
Vol 130 (5) ◽  
pp. 615-626 ◽  
Author(s):  
Anke Kurz ◽  
Dagmar Viertel ◽  
Andreas Herrmann ◽  
Karin Müller

One of the essential properties of mammalian, including sperm, plasma membranes is a stable transversal lipid asymmetry with the aminophospholipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), typically in the inner, cytoplasmic leaflet. The maintenance of this nonrandom lipid distribution is important for the homeostasis of the cell. To clarify the relevance of lipid asymmetry to sperm function, we have studied the localization of PS in boar sperm cell membranes. By using labeled annexin V as a marker for PS and propidium iodide (PI) as a stain for nonviable cells in conjunction with different methods (flow cytometry, fluorescence and electron microscopy), we have assessed the surface exposure of PS in viable cells during sperm genesis, that is, before and during capacitation as well as after acrosome reaction. An approach was set up to address also the presence of PS in the outer acrosome membrane. The results show that PS is localized in the cytoplasmic leaflet of the plasma membrane as well as on the outer acrosome membrane. Our results further indicate the cytoplasmic localization of PS in the postacrosomal region. During capacitation and acrosome reaction of spermatozoa, PS does not become exposed on the outer surface of the viable cells. Only in a subpopulation of PI-positive sperm cells does PS became accessible upon capacitation. The stable cytoplasmic localization of PS in the plasma membrane, as well as in the outer acrosome membrane, is assumed to be essential for a proper genesis of sperm cells during capacitation and acrosome reaction.


The ultra-structure of the developing notochord in urodele embryos, from the neurula to young tadpole stages, has been studied in thin sections. The first part of the paper is con­cerned with the intercellular membranes, the second with intracellular structures. In neurula stages the notochord cells are in rather loose contact, and gaps of considerable size occur between them. In tailbud stages, the cells become much more closely apposed, the surface of contact being usually thrown into slight waves or bumps; when sectioned normally it appears as two closely adherent profiles. In later tailbud stages the plasma membranes of the cells begin to fall apart again. The first sign of this is the appearance of small vesicles whose form suggests that fluid is being secreted into the intercellular spaces. These membrane vesicles increase considerably in numbers, but not in average dimensions(diameter about 500 to 700 Å). It is concluded that the increase in the closeness of associa­tion between contiguous cell membranes, which is seen during the early stages of chordagenesis, might provide the motive force which brings about the morphogenesis of the organ, as has been suggested earlier. The later separation of the cell membranes, with the appearance of membrane vesicles, is an unexpected phenomenon the significance of which is not clear. At the beginning of the period, the cells are of an undifferentiated embryonic type; by the end of it they have acquired a specific histological character, involving the appearance of large fluid-filled intracellular vacuoles, the formation of a notochordal sheath and other features. During the course of differentiation, two different types of ergastoplasm make their appearance one after another. The first is associated with the formation of the fluid-filled vacuoles; the second with the formation of the sheath ; and an ergastoplasm resembling the second chordal type is also found in the mesenchyme cells which lie against the external surface of the sheath. All three ergastoplasms are continuous with the nuclear envelope at the time when they are rapidly increasing in size; and it seems probable that they are directly derived from the outer member of the nuclear envelope. Golgi elements, mitochondria and various other types of granule (‘multi-vesiculate bodies') are also found. In the early stages the body of the nucleus is often penetrated by long cytoplasmic processes. It is suggested that these may arise when the new nuclear envelope is being formed at telophase. It is argued that the morphologically characteristic types of ergastoplasm found in different types of cell, and at different stages during the development of a given type of cell, are probably not merely consequences of the particular type of synthesis proceeding, since they appear before such synthesis can have got very far; it seems more probable that the ultra-microscopic morphology of the nuclear envelope and ergastoplasm is a visible expres­sion of the nature of the synthetic machinery. The functions of these structures might either be to increase the efficiency of the nuclear control of cytoplasmic processes, or to contribute to the co-ordination between the various different synthetic processes which must be involved in differentiation.


2015 ◽  
Vol 225 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Joseph Aizen ◽  
Peter Thomas

The regulation of receptor trafficking to the cell surface and its effect on responses of target cells to growth factors and hormones remain poorly understood. Initial evidence has been recently obtained using cancer cells that surface expression of the epidermal growth factor receptor (EGFR) is dependent on its association with progesterone receptor membrane component 1 (PGRMC1). Estrogen inhibition of oocyte maturation (OM) in zebrafish is mediated through G-protein-coupled estrogen membrane receptor 1 (Gper1) and involves activation of Egfr. Therefore, in this study, the potential roles of Pgrmc1 in the cell surface expression and functions of Egfr in normal cells were investigated in this in vitro OM model of Egfr action using an inhibitor of PGMRC1 signaling, AG205. A single ∼60 kDa protein band, which corresponds to the size of the Pgrmc1 dimer, was detected on plasma membranes of fully grown oocytes by western blotting. Co-treatment with the PGRMC1 inhibitor AG205 (20 μM) blocked the inhibitory effects of 100 nM estradiol-17β and the GPER agonist, G-1, on spontaneous maturation of denuded zebrafish oocytes. Moreover, reversal of these estrogen effects on OM by the EGFR inhibitors AG1478 and AG825 (50 μM) was prevented by co-incubation with the PGRMC1 inhibitor. Inhibition of Pgrmc1 signaling with AG205 also caused a decrease in Egfr-dependent signaling and Egfr expression on oocyte cell membranes. These results indicate that maintenance of Pgrmc1 signaling is required for Egfr expression on zebrafish oocyte cell membranes and for conserving the functions of Egfr in maintaining meiotic arrest through estrogen activation of Gper.


2006 ◽  
Vol 50 (9) ◽  
pp. 2932-2940 ◽  
Author(s):  
Robert Bucki ◽  
Paul A. Janmey

ABSTRACTPBP 10, an antibacterial, cell membrane-permeant rhodamine B-conjugated peptide derived from the polyphosphoinositide binding site of gelsolin, interacts selectively with both lipopolysaccharides (LPS) and lipoteichoic acid (LTA), the distinct components of gram-negative and gram-positive bacteria, respectively. Isolated LPS and LTA decrease the antimicrobial activities of PBP 10, as well as other antimicrobial peptides, such as cathelicidin-LL37 (LL37) and mellitin. In an effort to elucidate the mechanism of bacterial killing by PBP 10, we compared its effects on artificial lipid bilayers and eukaryotic cell membranes with the actions of the mellitin, magainin II, and LL37 peptides. This study reveals that pore formation is unlikely to be involved in PBP 10-mediated membrane destabilization. We also investigated the effects of these peptides on platelets and red blood cells (RBCs). Comparison of these antimicrobial peptides shows that only mellitin has a toxic effect on platelets and RBCs in a concentration range concomitant with its bactericidal activity. The hemolytic activities of the PBP 10 and LL37 peptides significantly increase when RBCs are osmotically swollen in hypotonic solution, indicating that these antibacterial peptides may take advantage of the more extended form of bacterial membranes in exerting their killing activities. Additionally, we found that LL37 hemolytic activity was much higher when RBCs were induced to expose phosphatidylserine to the external leaflet of their plasma membranes. This finding suggests that asymmetrical distribution of phospholipids in the external membranes of eukaryotic cells may represent an important factor in determining the specificity of antibacterial peptides for targeting bacteria rather than eukaryotic cells.


1963 ◽  
Vol 17 (2) ◽  
pp. 363-0373 ◽  
Author(s):  
S. Ahmad Shafiq

The differentiation of the indirect flight muscles was studied in the various pupal stages of Drosophila. Fibrillar material originates in the young basophilic myoblasts in the form of short myofilamants distributed irregularly near the cell membranes. The filaments later become grouped into bundles (fibrils). Certain "Z bodies" appear to be important during this process. The "Z bodies" may possibly be centriolar derivatives and are the precursors of the Z bands. The first formed fibrils (having about 30 thick myofilaments) are already divided into sarcomeres by Z bands. These sarcomeres, however, seem to be shorter than those of the adult fibrils.The H band differentiates in fibrils having about 40 thick myofilaments; the fibrils constrict in the middle of each sarcomere during this process. The individual myofibrils increase from about 0.3 µ to 1.5 µ in diameter during development, apparently by addition of new filaments on the periphery of the fibrils. The ribosomes seem to be the only cytoplasmic inclusions which are closely associated with these growing myofibrils. Disintegration of the plasma membranes limiting individual myoblasts was commonly seen during development of flight muscles, supporting the view that the multinuclear condition of the fibers of these muscles is due to fusion of myoblasts.


2020 ◽  
Vol 21 (7) ◽  
pp. 2643
Author(s):  
Bingen G. Monasterio ◽  
Noemi Jiménez-Rojo ◽  
Aritz B. García-Arribas ◽  
Howard Riezman ◽  
Félix M. Goñi ◽  
...  

This study was aimed at preparing and characterizing plasma membranes (PM) from Chinese Hamster Ovary (CHO) cells. Two methods of PM preparation were applied, one based on adhering cells to a poly-lysine-coated surface, followed by hypotonic lysis and removal of intracellular components, so that PM patches remain adhered to each other, and a second one consisting of bleb induction in cells, followed by separation of giant plasma membrane vesicles (GPMV). Both methods gave rise to PM in sufficient amounts to allow biophysical and biochemical characterization. Laurdan generalized polarization was used to measure molecular order in membranes, PM preparations were clearly more ordered than the average cell membranes (GP ≈0.450 vs. ≈0.20 respectively). Atomic force microscopy was used in the force spectroscopy mode to measure breakthrough forces of PM, both PM preparations provided values in the 4–6 nN range, while the corresponding value for whole cell lipid extracts was ≈2 nN. Lipidomic analysis of the PM preparations revealed that, as compared to the average cell membranes, PM were enriched in phospholipids containing 30–32 C atoms in their acyl chains but were relatively poor in those containing 34–40 C atoms. PM contained more saturated and less polyunsaturated fatty acids than the average cell membranes. Blebs (GPMV) and patches were very similar in their lipid composition, except that blebs contained four-fold the amount of cholesterol of patches (≈23 vs. ≈6 mol% total membrane lipids) while the average cell lipids contained 3 mol%. The differences in lipid composition are in agreement with the observed variations in physical properties between PM and whole cell membranes.


Sign in / Sign up

Export Citation Format

Share Document