scholarly journals Pilot-Scale Assessment of Urea as a Chemical Cleaning Agent for Biofouling Control in Spiral-Wound Reverse Osmosis Membrane Elements

Membranes ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 117 ◽  
Author(s):  
Huma Sanawar ◽  
Szilárd S. Bucs ◽  
Martin A. Pot ◽  
Jure Zlopasa ◽  
Nadia M. Farhat ◽  
...  

Routine chemical cleaning with the combined use of sodium hydroxide (NaOH) and hydrochloric acid (HCl) is carried out as a means of biofouling control in reverse osmosis (RO) membranes. The novelty of the research presented herein is in the application of urea, instead of NaOH, as a chemical cleaning agent to full-scale spiral-wound RO membrane elements. A comparative study was carried out at a pilot-scale facility at the Evides Industriewater DECO water treatment plant in the Netherlands. Three fouled 8-inch diameter membrane modules were harvested from the lead position of one of the full-scale RO units treating membrane bioreactor (MBR) permeate. One membrane module was not cleaned and was assessed as the control. The second membrane module was cleaned by the standard alkali/acid cleaning protocol. The third membrane module was cleaned with concentrated urea solution followed by acid rinse. The results showed that urea cleaning is as effective as the conventional chemical cleaning with regards to restoring the normalized feed channel pressure drop, and more effective in terms of (i) improving membrane permeability, and (ii) solubilizing organic foulants and the subsequent removal of the surface fouling layer. Higher biomass removal by urea cleaning was also indicated by the fact that the total organic carbon (TOC) content in the HCl rinse solution post-urea-cleaning was an order of magnitude greater than in the HCl rinse after standard cleaning. Further optimization of urea-based membrane cleaning protocols and urea recovery and/or waste treatment methods is proposed for full-scale applications.

2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2002 ◽  
Vol 45 (6) ◽  
pp. 169-176 ◽  
Author(s):  
S. Salem ◽  
D. Berends ◽  
J.J. Heijnen ◽  
M.C.M. van Loosdrecht

Mathematical modelling is considered a time and cost-saving tool for evaluation of new wastewater treatment concepts. Modelling can help to bridge the gap between lab and full-scale application. Bio-augmentation can be used to obtain nitrification in activated sludge systems with a limited aerobic sludge retention time. In the present study the potential for augmenting the endogenous nitrifying population is evaluated. Implementing a nitrification reactor in the sludge return line fed with sludge liquor with a high ammonia concentration leads to augmentation of the native nitrifying population. Since the behaviour of nitrifiers is relatively well known, a choice was made to evaluate this new concept mainly based on mathematical modelling. As an example an existing treatment plant (wwtp Walcheren, The Netherlands) that needed to be upgraded was used. A mathematical model, based on the TUDP model and implemented in AQUASIM was developed and used to evaluate the potential of this bioaugmentation in the return sludge line. A comparison was made between bio-augmentation and extending the existing aeration basins and anoxic tanks. The results of both modified systems were compared to give a quantitative basis for evaluation of benefits gained from such a system. If the plant is upgraded by conventional extension it needs an increase in volume of about 225%; using a bioaugmentation in the return sludge line the total volume of the tanks needs to be expanded by only 75% (including the side stream tanks). Based on the modelling results a decision was made to implement the bioaugmentation concept at full scale without further pilot scale testing, thereby strongly decreasing the scale-up period for this process.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 283-288 ◽  
Author(s):  
R. Iranpour ◽  
R. Palacios ◽  
H.H.J. Cox ◽  
V. Abkian

Fecal coliform recurrence has been observed at the City of Los Angeles Hyperion Treatment Plant during pilot-scale experiments with a designated thermophilic battery of six anaerobic digesters, while other digesters were still at a mesophilic temperature. Several lab and full-scale experiments indicated the following possible causes of the growth/reactivation of fecal coliforms in post-digestion: a) contamination of thermophilically digested biosolids with mesophilically digested biosolids; b) a large drop in the biosolids temperature between the centrifuges and silos, which could have allowed the reactivation and/or growth of fecal coliforms. These were resolved by the full plant conversion to thermophilic anaerobic digestion and design modifications of the post-digestion train.


2010 ◽  
Vol 10 (6) ◽  
pp. 961-968 ◽  
Author(s):  
J. E. Drewes ◽  
J. A. McDonald ◽  
T. Trinh ◽  
M. V. Storey ◽  
S. J. Khan

A pilot-scale plant was employed to validate the performance of a proposed full-scale advanced water treatment plant (AWTP) in Sydney, Australia. The primary aim of this study was to develop a chemical monitoring program that can demonstrate proper plant operation resulting in the removal of priority chemical constituents in the product water. The feed water quality to the pilot plant was tertiary-treated effluent from a wastewater treatment plant. The unit processes of the AWTP were comprised of an integrated membrane system (ultrafiltration, reverse osmosis) followed by final chlorination generating a water quality that does not present a source of human or environmental health concern. The chemical monitoring program was undertaken over 6 weeks during pilot plant operation and involved the quantitative analysis of pharmaceuticals and personal care products, steroidal hormones, industrial chemicals, pesticides, N-nitrosamines and halomethanes. The first phase consisted of baseline monitoring of target compounds to quantify influent concentrations in feed waters to the plant. This was followed by a period of validation monitoring utilising indicator chemicals and surrogate measures suitable to assess proper process performance at various stages of the AWTP. This effort was supported by challenge testing experiments to further validate removal of a series of indicator chemicals by reverse osmosis. This pilot-scale study demonstrated a simplified analytical approach that can be employed to assure proper operation of advanced water treatment processes and the absence of trace organic chemicals.


Desalination ◽  
2021 ◽  
Vol 518 ◽  
pp. 115289
Author(s):  
Kwanho Jeong ◽  
Moon Son ◽  
Nakyung Yoon ◽  
Sanghun Park ◽  
Jaegyu Shim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document