scholarly journals Platinum Group Elements Recovery from Used Catalytic Converters by Acidic Fusion and Leaching

Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 485 ◽  
Author(s):  
Erik Prasetyo ◽  
Corby Anderson

The recovery of platinum group elements (PGE (platinum group element coating); Pd, Pt, and Rh) from used catalytic converters, using low energy and fewer chemicals, was developed using potassium bisulfate fusion pretreatment, and subsequently leached using hydrochloric acid. In the fusion pre-treatment, potassium bisulfate alone (without the addition of an oxidant) proved to be an effective and selective fusing agent. It altered PGE into a more soluble species and did not react with the cordierite support, based on X-Ray Diffraction (XRD) and metallographic characterization results. The fusion efficacy was due to the transformation of bisulfate into pyrosulfate, which is capable of oxidizing PGE. However, the introduction of potassium through the fusing agent proved to be detrimental, in general, since potassium formed insoluble potassium PGE chloro-complexes during leaching (decreasing the recovery) and required higher HCl concentration and a higher leaching temperature to restore the solubility. Optimization on the fusion and leaching parameter resulted in 106% ± 1.7%, 93.3% ± 0.6%, and 94.3% ± 3.9% recovery for Pd, Pt, and Rh, respectively. These results were achieved at fusion conditions: temperature 550 °C, potassium bisulfate/raw material mass ratio 2.5, and fusion time within 30 min. The leaching conditions were: HCl concentration 5 M, temperature 80 °C, and time within 20 min.


Author(s):  
Mohammad W. Kadi ◽  
Iqbal Ismail ◽  
Nadeem Ali ◽  
Abdallah A. Shaltout

Platinum group elements (PGE) including Ru, Rh, Pt and Pd have been quantified in air particulate matter with an aerodynamic diameter equal or less than 10 microns (PM10) using inductively coupled plasma mass spectrometry (ICP-MS). PM10 aerosols have been collected from three sites representing various activities in Jeddah city, Saudi Arabia. These locations are residential site with heavy traffic, industrial site and heavy traffic and a light traffic site outside the city. To obtain reasonable data of the PGE concentrations, a group from 10 to 15 PM10 samples were collected every month. The annual and seasonal variation of the mass concentration of the PGE were demonstrated. In all locations, Pt and Pd were relatively higher than Ru and Rh possibly because their main use is in automobile catalytic converters. Concentrations of observed PGE in PM10 could be arranged in ascending order as: Rh < Ru < Pd < Pt. In case of Ru and Pt, there are clear similarities in terms of the overall mean concentrations at the sampling locations. Due to the high concentration of Ru, Rh and Pd at low traffic site, there are certainly other sources of these elements rather than vehicle catalytic converters. However, at the industrial/heavy traffic location, high concentrations of Ru were detected during February 2015. In addition, high Pt concentrations were also detected at the light traffic site during May 2015. Results indicate that Pt source in PM10 is mainly the automobile catalytic converters.



2014 ◽  
Vol 979 ◽  
pp. 347-350
Author(s):  
Rungsarit Koonawoot ◽  
Cherdsak Saelee ◽  
Sakdiphon Thiensem ◽  
Sittiporn Punyanitya

This work reports the influence of chemical composition and sintering schedule on the properties of sintered bodies of hydroxyapatite (HA) bioceramic. The method of preparing sintered bodies by solid state reaction and uniaxial pressing. The raw material used calcium carbonate (CaCO3) and ammonium dihydrogen phosphate (NH4H2PO4) powder as precursors. These powders were mixed at CaCO3: NH4H2PO4 mass ratio of 1:0.697, 1:0.692, 1:0.689, 1:0.685 and 1:0.68, respectively. The compositions in the temperatures range of 800-1300 °C for 3 hour. The sintered bodies were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). Properties including phase, microstructures, porosity and bending strength of the samples. The results show that green bodies can be sintered at 1150 °C for 3 hours. This temperature found that crystals growth, highest of HA phase content in sintered bodies, good density and high efficiency strength properties.





2002 ◽  
Vol 296 (1-3) ◽  
pp. 199-208 ◽  
Author(s):  
M Moldovan ◽  
M.A Palacios ◽  
M.M Gómez ◽  
G Morrison ◽  
S Rauch ◽  
...  


2016 ◽  
Vol 75 ◽  
pp. 100-106 ◽  
Author(s):  
Indra S. Sen ◽  
Arijeet Mitra ◽  
Bernhard Peucker-Ehrenbrink ◽  
Sarah E. Rothenberg ◽  
Sachchida Nand Tripathi ◽  
...  






2012 ◽  
Vol 610-613 ◽  
pp. 3587-3590
Author(s):  
Li Wei ◽  
Xiao Qing Shi ◽  
Ying Wang ◽  
Ying Chong Ma ◽  
Ji Xiang Zhao ◽  
...  

Recently, the use of lignocellulosic fibres to reinforcing composite has received an increased attention. However, lack of good interfacial adhesion makes important the treatment of raw materials. In this study, the raw material Luffa fibres were treated by ionic liquids/water mixture and this treatment proved to be useful by elimination of gummy and waxy substances. The effect of the treatments on the structure of fibres was showed using SEM and XRD (X-Ray Diffraction) analysis. The SEM results revealed that the treatment resulted in a removal of lignin, pectin and hemicellulose substances, and change the characteristics of the surface topography. The XRD analysis shows the increase of crystallinity index.



Sign in / Sign up

Export Citation Format

Share Document