scholarly journals Crystallographic Orientation Dependence of Nitrogen Mass Transport in Austenitic Stainless Steel

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 615 ◽  
Author(s):  
Teresa Moskalioviene ◽  
Arvaidas Galdikas

The lattice stress-induced diffusion of nitrogen and hydrogen in austenitic stainless steel, taking place during nitriding in nitrogen/hydrogen plasma, is analyzed in the presented work. Stress-induced diffusion has an anisotropic nature and depends on the orientation of the crystal lattice. However, during simulations, it is not enough to take into account only the anisotropy of stress-induced diffusion, since this leads to contradictory results when comparing with experimental data. The problem is the surface concentration of nitrogen. Processes on the steel surface such as adsorption, desorption and heterogeneous chemical reactions are also very important. In the presented work, it is shown that these surface processes also have anisotropic natures, and it is very important to take this anisotropy into account during simulations. The influence of anisotropic surface processes on austenitic steel nitriding is analyzed in this study. It is shown that the nitrogen diffusion is anisotropic due to the effects of the anisotropic stress gradient and the anisotropic effects on the steel surface.

1970 ◽  
Vol 17 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Teresa MOSKALIOVIENĖ ◽  
Arvaidas GALDIKAS

The nitrogen transport mechanism in plasma nitrided austenitic stainless steel at moderate temperatures (around 400 °C) is explained by non-Fickian diffusion model. The model considers the diffusion of nitrogen in presence of internal stresses gradient induced by penetrating nitrogen as the next driving force of diffusion after concentration gradient. For mathematical description of stress induced diffusion process the equation of barodiffusion is used, which involves concentration dependant barodiffusion coefficient. For calculation of stress gradient it is assumed that stress depth profile linearly relates with the nitrogen concentration depth profile. The calculated nitrogen depth profiles in an austenitic stainless steel are in good agreement with experimental nitrogen profiles. The diffusion coefficient D = 1.68-10 -12 cm2/s for nitrogen in a plasma source ion nitrided 1Cr18Ni9Ti (18-8 type) austenitic stainless steel at 380 °C was found from fitting of experimental data. It is shown that nitrogen penetration depth and nitrogen surface concentration increases with nitriding temperature nonlinearly.http://dx.doi.org/10.5755/j01.ms.17.1.241


2013 ◽  
Vol 634-638 ◽  
pp. 2955-2959 ◽  
Author(s):  
Lie Shen ◽  
Liang Wang ◽  
Jiu Jun Xu ◽  
Ying Chun Shan

The fine grains and strain-induced martensite were fabricated in the surface layer of AISI 304 austenitic stainless steel by shot peening treatment. The shot peening effects on the microstructure evolution and nitrogen diffusion kinetics in the plasma nitriding process were investigated by optical microscopy and X-ray diffraction. The results indicated that when nitriding treatments carried out at 450°C for times ranging from 0 to 36h, the strain-induced martensite transformed to supersaturated nitrogen solid solution (expanded austenite), and slip bands and grain boundaries induced by shot peening in the surface layer lowered the activation energy for nitrogen diffusion and evidently enhanced the nitriding efficiency of austenitic stainless steel.


2009 ◽  
Vol 49 (9) ◽  
pp. 1449-1451 ◽  
Author(s):  
Qingfeng Guan ◽  
Xuetao Wang ◽  
Jian Zhu ◽  
Kangmin Chen ◽  
Liang Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document