scholarly journals The Origins of High-Entropy Alloy Contamination Induced by Mechanical Alloying and Sintering

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1186
Author(s):  
Igor Moravcik ◽  
Antonin Kubicek ◽  
Larissa Moravcikova-Gouvea ◽  
Ondrej Adam ◽  
Vaclav Kana ◽  
...  

One of the prevailing problems for materials produced by powder metallurgy is contamination from various sources. This work deals with the influence of process parameters and presence of process control agents (PCA) on the contamination level of materials produced by means of mechanical alloying (MA) technology, densified with spark plasma sintering (SPS). The equiatomic CoCrFeNi high-entropy alloy (HEA) was manufactured by the said methodology. For clear comparison, the 316L austenitic steel powder was milled and densified with identical conditions as a reference material. Both materials were milled in argon and nitrogen atmospheres for various times from 5 to 30 h. Chemical analysis of contamination by carbon, oxygen, and nitrogen within the powder and bulk materials was carried out using combustion analyzers. The microstructural analysis of powders and bulk samples was carried out using scanning electron microscopy (SEM) with focus on contaminant phases. The results show that carbon contamination increases with milling time. It is caused by wear of milling vial and balls made from high-carbon steels. Increase of carbon content within consolidation using SPS was also observed. The oxygen contamination also increases with milling time. It is more pronounced in the CoCrFeNi alloy due to higher oxidation of powder surfaces prior to milling. Milling of powders using nitrogen atmosphere also causes an increase of nitrogen content in both HEA and AISI 316L. The use of PCA (ethanol) during milling even for a short time (30 min) causes significant increase of carbon and oxygen contamination. The ways to decrease contamination are discussed in the paper.

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1493
Author(s):  
Negar Yazdani ◽  
Mohammad Toroghinejad ◽  
Ali Shabani ◽  
Pasquale Cavaliere

This study was conducted to investigate the characteristics of the AlCrCuFeNi high-entropy alloy (HEA) synthesized through mechanical alloying (MA). In addition, effects of Process Control Agent (PCA) amount and milling time were investigated using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The results indicated that the synthesized AlCrCuFeNi alloy is a dual phase (FCC + BCC) HEA and the formation of the phases is strongly affected by the PCA amount. A high amount of PCA postponed the alloying process and prevented solid solution formation. Furthermore, with an increase in the PCA amount, lattice strain decreased, crystallite size increased, and the morphology of the mechanically alloyed particles changed from spherical to a plate-like shape. Additionally, investigation of thermal properties and annealing behavior at different temperatures revealed no phase transformation up to 400 °C; however, the amount of the phases changed. By increasing the temperature to 600 °C, a sigma phase (σ) and a B2-ordered solid solution formed; moreover, at 800 °C, the FCC phase decomposed into two different FCC phases.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 265
Author(s):  
Chun-Liang Chen ◽  
Sutrisna

Refractory high-entropy alloy (RHEA) is one of the most promising materials for use in high-temperature structural materials. In this study, the WMoNbTaV coatings on 304 stainless steel substrates has been prepared by mechanical alloying (MA). Effects of V addition and subsequent heat treatment on properties of the WMoNbTaV coatings were investigated. The results show that the RHEA coatings with nanocrystalline body-centered cubic (BCC) solid-solution phase were generated by the mechanical alloying process. The presence of the V element promotes a uniform microstructure and homogeneous distribution of composition in the RHEA coatings due to improving alloying efficiency, resulting in an increase of hardness. After the annealing treatment of the RHEA coatings, microstructure homogeneity was further enhanced; however, the high affinity of Ta for oxygen causes the formation of Ta-rich oxides. Annealing also removes strain hardening generated by high-energy ball milling and thus decreases the hardness of the RHEA coating and alters microstructure evolution and mechanical properties.


NANO ◽  
2018 ◽  
Vol 13 (09) ◽  
pp. 1850100 ◽  
Author(s):  
Rui-Feng Zhao ◽  
Bo Ren ◽  
Guo-Peng Zhang ◽  
Zhong-Xia Liu ◽  
Jian-Jian Zhang

The CrCuFeMnNi high entropy alloy (HEA) powder was synthesized by mechanical alloying. The effects of milling time and subsequent annealing on the structure evolution, thermostability and magnetic property were investigated. After 50[Formula: see text]h of milling, the CrCuFeMnNi HEA powder consisted of a major FCC phase and a small amount of BCC phase. The crystallite size and strain lattice of 50[Formula: see text]h-ball-milled CrCuFeMnNi HEA powder were 12[Formula: see text]nm and 1.02%, respectively. The powder exhibited refined morphology and excellent chemical homogeneity. The supersaturated solid solution structure of the as-milled HEA powder transformed into FCC1, FCC2, a small amount of BCC and [Formula: see text] phase in annealed state. Most of the BCC phase decomposed into FCC (mainly FCC2 phase) and [Formula: see text] phases, and the dynamic phase transition was almost in equilibrium at 900[Formula: see text]C. The saturated magnetization and coercivity force of the 50[Formula: see text]h-ball-milled CrCuFeMnNi HEA powder were respectively 16.1[Formula: see text]emu/g and 56.2[Formula: see text]Oe.


Materia Japan ◽  
2018 ◽  
Vol 57 (7) ◽  
pp. 333-337
Author(s):  
Soo-Hyun Joo ◽  
Takeshi Wada ◽  
Hidemi Kato ◽  
Soon-Jik Hong ◽  
Hyoung Seop Kim

Author(s):  
Marcello Cabibbo ◽  
Filip Průša ◽  
Alexandra Šenková ◽  
Andrea Školáková ◽  
Vojtěch Kučera ◽  
...  

High-entropy alloys are known to show exceptionally high mechanical properties, both compression and tensile strength, and unique physical properties, such as their phase stability. These quite unusual properties are primarily due to the microstructure generated by mechanical alloying processes, such as conventional induction arc melting, powder metallurgy, or mechanical alloying. In the present study, an equiatomic CoCrFeNiNb high-entropy alloy was prepared by a sequence of conventional induction melting, powder metallurgy, and compaction via spark plasma sintering. The high-entropy alloys showed uniform sub-micrometer grain microstructure consisted by a mixture of an fcc solid solution strengthened by a hcp Laves phase and a third intergranular oxide phase. The as-cast high-entropy alloys showed an ultimate compression strength (UCS) of ∼1400 MPa, which after sintering and compaction at 1273 K increased up to ∼2400 MPa. Extensive transmission electron microscopy quantitative analyses were carried out to model the UCS. A quite good agreement between the microstructure-strengthening model and the experimental UCS was found.


Sign in / Sign up

Export Citation Format

Share Document