scholarly journals Influence of AISI D2 Workpiece Roughness on Heat Partition and Plasma Channel Radius in the WEDM Process

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1360
Author(s):  
Jun Wang ◽  
Jose Antonio Sánchez ◽  
Borja Izquierdo ◽  
Izaro Ayesta

As an important advanced machining process, in Wire Electrical Discharge Machining (WEDM) certain fundamental issues remain need to be studied in-depth, such as the effect of part surface roughness on heat transfer mechanisms. In the WEDM process, roughing cut wire goes into the workpiece to do the first shaping and in trim cut the wire sweeps on the outer surface to improve the surface roughness. In both of these two cases, the generation of sparks depends on the passing surface roughness. Therefore, with AISI D2 material and brass wire, this paper presents a study of the influence of part surface roughness on heat partition and the radius of the plasma channel in the WEDM process. Through extensive single discharge experiments, it is shown that the removal capacity per discharge can increase if the discharge occurs on a smoother surface. A Finite Element thermal model was then used for inverse fitting of the values of heat partition and radius of the plasma channel. These parameters completely define the characteristics of the heat conduction problem. The results indicate a strong correlation between an increase in heat partition ratio and a decrease in part surface roughness. The values of plasma channel radius show an increase in this value when discharging on rougher surfaces. It means that with the increasing of plasma channel radius, the heat source goes into the workpiece more dispersed. In the case of rougher surface, although the there is more area that affected by the heat source, finally the temperature of most area cannot reach to the melting point and it causes the smaller crater radius and volume, while the metal removal rate decreases. These results contribute towards a more complete understanding of the influence of surface roughness to the spark occurring.

2019 ◽  
Vol 814 ◽  
pp. 127-131
Author(s):  
Patittar Nakwong ◽  
Apiwat Muttamara

Wire electrical discharge machine (WEDM) is non-conventional machining process. It can be used for hard cutting material. The study has been presented the combining WEDM with an ultrasonic machine (USM) with brass and tungsten were used as a wire electrode and workpiece respectively. The experiment was carried out with an ultrasonic transducer at 40, 80 kHz. The results were observed with the material removal rate (MRR) and surface roughness (Ra). This research introduced the method of USM setup and described the effected of vibration with the wire electrode on the displacement of amplitude. The result shows that the WEDM process with USM at 40 kHz can be more improved with the material removal rate and surface roughness than that of USM at 80 kHz. This can be explained that higher frequency affected to vibration displacement which makes lower amplitude.


2019 ◽  
Vol 12 (2) ◽  
pp. 107
Author(s):  
Fipka Bisono ◽  
Dhika Aditya P.

Wire electrical discharge machining(WEDM) banyak digunakan untuk proses pembuatan punch and dies. Dimana material yang digunakan memiliki tingkat kekerasan yang sangat tinggi. Parameter pemesinan yang kurang tepat dapat menyebabkan hasil pemotongan yang tidak optimal. Penelitian ini dilakukan untuk mengoptimalkan beberapa karakteristik hasil proses pemesinan secara serentak dengan cara mevariasikan variabel-variabel proses pemesinan WEDM. Karakteristik hasil proses yang diteliti antara lain adalah lebar pemotongan, kekasaran permukaan, dan tebal lapisan white layer. Proses pemesinan dilakukan pada material tool steel SKD 11. Arc on time, on time, open voltage dan servo voltage merupakan variabel-variabel proses yang akan divariasikan. Rancangan percobaan dilakukan menggunakan metode Taguchi dengan matriks ortogonal L18(21x33) dengan dua kali replikasi. Sedangkan langkah yang digunakan untuk mengoptimasi karakteristik hasil proses pemesinan yang diteliti secara serentak adalah menggunakan metode grey relational analysis (GRA). Lebar pemotongan, kekasaran permukaan dan tebal lapisan white layer memiliki performance characteristics “smaller-is-better.” Hasil dari penelitian menunjukkan nilai variabel-variabel proses pemesinan yang menghasilkan kualitas karakteristik yang paling optimum adalah sebagai berikut: arc on time (1A), on time (4?s), open voltage (70V), dan servo voltage (40V). Dengan persentase kontribusi variabel proses dari yang terbesar berturut-turut adalah on time (65,09%), open voltage (11,35%), arc on time (7,71%), dan servo voltage (5,61%). Wire electrical discharge machining (WEDM) process is commonly used to make punch and dies. WEDM services are typically used to cut hard metals. Inappropriate machining parameters can cause suboptimal cutting results. This research was conducted to optimize several characteristics of the machining process simultaneously by varying WEDM machining process variables. Performance characteristics of the WEDM process include the kerf, surface roughness and thickness of the white layer. The machining process is carried out on SKD 11 tool steel material.  Arc on time, on time, open voltage and servo voltage are process variables that will be varied. The experimental matrix design was carried out using the Taguchi method L18 (21x33) orthogonal array with two replications. Then to optimize the performance characteristics of the machining process simultaneously is using the Gray Relational Analysis (GRA) method. Performance characteristics of kerf, surface roughness, and thickness of the white layer is "smaller-is-better". The results of the experiment indicate the value of the machining process variables that produce the most optimum quality performance characteristics are as follows: arc on time (1A), on time (4?s), open voltage (70V), and servo voltage (40V). And the percentage of contribution of the process variables from the largest to smallest are as follows: on time (65,09%), open voltage (11,35%), arc on time (7,71%), and servo voltage (5,61%).


2013 ◽  
Vol 393 ◽  
pp. 21-28 ◽  
Author(s):  
Bobby Oedy Pramoedyo Soepangkat ◽  
Bambang Pramujati

In this paper, the optimization of surface roughness and recast layer thickness of a WEDM process of AISI D2 steel was investigated by using Taguchi method, grey relational analysis and fuzzy logic. The experiments were conducted under varying flushing pressure, on time, open voltage, off time and servo voltage. An orthogonal array, signal-to-noise (S/N) ratio, grey relational analysis, grey-fuzzy reasoning grade and analysis of variance were employed to the study of the multiple performance characteristics. Experimental results have shown that machining performance characteristics in WEDM process of AISI D2 steel can be improved effectively through the combination of Taguchi method, grey relational analysis and fuzzy logic.


2016 ◽  
Vol 63 (1) ◽  
pp. 45-71 ◽  
Author(s):  
S. Prabhu ◽  
B. K. Vinayagam

Abstract Electrical Discharge Machining (EDM) process with copper tool electrode is used to investigate the machining characteristics of AISI D2 tool steel material. The multi-wall carbon nanotube is mixed with dielectric fluids and its end characteristics like surface roughness, fractal dimension and metal removal rate (MRR) are analysed. In this EDM process, regression model is developed to predict surface roughness. The collection of experimental data is by using L9 Orthogonal Array. This study investigates the optimization of EDM machining parameters for AISI D2 Tool steel using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. Analysis of variance (ANOVA) and F-test are used to check the validity of the regression model and to determine the significant parameter affecting the surface roughness. Atomic Force Microscope (AFM) is used to capture the machined image at micro size and using spectroscopy software the surface roughness and fractal dimensions are analysed. Later, the parameters are optimized using MINITAB 15 software, and regression equation is compared with the actual measurements of machining process parameters. The developed mathematical model is further coupled with Genetic Algorithm (GA) to determine the optimum conditions leading to the minimum surface roughness value of the workpiece.


Author(s):  
S. Chakraborty ◽  
S. Mitra ◽  
D. Bose

The recent scenario of modern manufacturing is tremendously improved in the sense of precision machining and abstaining from environmental pollution and hazard issues. In the present work, Ti6Al4V is machined through wire EDM (WEDM) process with powder mixed dielectric and analyzed the influence of input parameters and inherent hazard issues. WEDM has different parameters such as peak current, pulse on time, pulse off time, gap voltage, wire speed, wire tension and so on, as well as dielectrics with powder mixed. These are playing an essential role in WEDM performances to improve the process efficiency by developing the surface texture, microhardness, and metal removal rate. Even though the parameter’s influencing, the study of environmental effect in the WEDM process is very essential during the machining process due to the high emission of toxic vapour by the high discharge energy. In the present study, three different dielectric fluids were used, including deionised water, kerosene, and surfactant added deionised water and analysed the data by taking one factor at a time (OFAT) approach. From this study, it is established that dielectric types and powder significantly improve performances with proper set of machining parameters and find out the risk factor associated with the PMWEDM process.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


Sign in / Sign up

Export Citation Format

Share Document