scholarly journals Coupling Finite Element Analysis and the Theory of Critical Distances to Estimate Critical Loads in Al6060-T66 Tubular Beams Containing Notches

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1395
Author(s):  
Marcos Sánchez ◽  
Sergio Cicero ◽  
Borja Arroyo ◽  
José Alberto Álvarez

This paper validates a methodology for the estimation of critical loads in tubular beams containing notch-type defects. The methodology is particularized for the case of Al6060-T66 tubular cantilever beams containing U-shaped notches. It consists in obtaining the stress field at the notch tip using finite element analysis (FEA) and the subsequent application of the theory of critical distances (TCD) to derive the corresponding critical load (or load-bearing capacity). The results demonstrate that this methodology provides satisfactory predictions of fracture loads.

2013 ◽  
Vol 486 ◽  
pp. 84-89
Author(s):  
Petr Bouška ◽  
Radomír Pukl ◽  
Miroslav Špaček ◽  
Miroslav Vokáč ◽  
Tomáš Bittner

Loading tests of triple glazed facade panels with dimensions of 1.5 x 2.64 m were carried out. The purpose of the tests was to examine mechanical resistance of the glass panes, namely the deformations caused by a local load, to determine degree of interaction between the panes of triple glazing exposed to the loading action and to prove the load bearing capacity of the panels. This experimental investigations were accompanied by finite element analysis.


2013 ◽  
Vol 838-841 ◽  
pp. 510-513
Author(s):  
Chun Li Zhou ◽  
Ru Yang ◽  
Xue Ying Tang

Prestressed concrete-filled square steel tube truss is the kind of truss whose upper chords and lower chords are respectively concrete-filled square steel tube and prestressed square steel tube. Four truss models as square steel tube truss, concrete-filled square steel tube truss, prestressed square steel tube truss and prestressed concrete-filled square steel tube truss were analysed by ANSYS, each of those truss models’ span has three variations. The result shows that the bar sections’ strength of square steel tube truss and concrete-filled square steel tube truss are far from reaching their design strength when the allowable values of deflection has reachedl//400. Unlike the cases described above, when the bar sections’ strength of prestressed square steel tube truss and prestressed concrete-filled square steel tube truss has reached their design strength, their load-bearing capacity is 1 or 1.5 times higher than those cases above and their deflection has not reached the allowable values.


2007 ◽  
Vol 539-543 ◽  
pp. 2651-2656 ◽  
Author(s):  
C.J. Huang ◽  
E. Ghassemieh

A 3-D coupled temperature-displacement finite element analysis is performed to study an ultrasonic consolidation process. Results show that ultrasonic wave is effective in causing deformation in aluminum foils. Ultrasonic vibration leads to an oscillating stress field. The oscillation of stress in substrate lags behind the ultrasonic vibration by about 0.1 cycle of ultrasonic wave. The upper foil, which is in contact with the substrate, has the most severe deformation. The substrate undergoes little deformation. Apparent material softening by ultrasonic wave, which is of great concern for decades, is successfully simulated. The higher the friction coefficient, the more obvious the apparent material softening effect.


2014 ◽  
Vol 1079-1080 ◽  
pp. 177-182
Author(s):  
Shao Wu Zhang ◽  
Ying Chuan Chen ◽  
Geng Biao Zhang

In order to study the performance of concrete frame columns that reinforcedby assembleinclined web steel truss, with the same reciprocatinghorizontal displacement and different axialcompression.It canbe calculate the mechanical behavior of concrete frame columns and reinforced columns by using the finite element analysis software ABAQUS. Simulation analysis shows that the bearing capacity ofreinforced columnshas greatly increased andpresented a full hysteresis curve. The result shows that the reinforcement method of assemble inclined web steel truss can greatly improve the bearing capacity and ductility of the concrete frame column, and the axial compression is larger, the better the reinforcement effect.


2013 ◽  
Vol 427-429 ◽  
pp. 94-98
Author(s):  
Tie Cheng Wang ◽  
Wei Kai Wang ◽  
Hai Long Zhao

The flexural behavior of non-holomorphic circular pile and cylindrical pile is respectively evaluated based on the results of finite element analysis with ABAQUS. It is presented that the ultimate bearing capacities of non-holomorphic circular pile and cylindrical pile have little difference. The displacement ductility ratio of non-holomorphic circular pile lies between 3.38 and 3.64, indicating that the NHC pile has better ductility.


2012 ◽  
Vol 468-471 ◽  
pp. 2517-2520 ◽  
Author(s):  
Xin Ying Xie ◽  
Xin Sheng Yin

In this paper ,it analyses the push-extend multi-under-reamed pile in use of elastic-plastic theory by the software ANSYS.It takes four push-extend multi-under-reamed piles which are the same except plates' distance.It introduces the realative theory to make the anlysis much more accuracy.The results which is taken by ANSYS are researched to find out the regularity and can certain the reasonable plate's distance to anlyze the bearing capacity of push-extend multi-under-reamed pile at the same time.


2000 ◽  
Author(s):  
Matthew B. Parkinson ◽  
Gregory M. Roach ◽  
Larry L. Howell

Abstract A simple (quadratic) mathematical model for predicting the deflection path of both non-tapered and continuously tapered cantilever beams loaded with a vertical end force is presented. It is based on the proposition that the path is a function of the ratio of the endpoints’ moments of inertia. The model is valid for both small and large (the tip makes a 70 degree angle with the horizontal) deflections. This was verified through physical testing, comparison to solution of the Bernoulli-Euler equation, and results obtained through nonlinear finite element analysis. Predicted endpoint deflections were found to be accurate within 1.8% of the actual deflection path for moment of inertia ratios varying from 1:1 to 1000:1.


Sign in / Sign up

Export Citation Format

Share Document