scholarly journals Microstructure and Properties of Copper–Graphite Composites Fabricated by Spark Plasma Sintering Based on Two-Step Mixing

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1506
Author(s):  
Jinping Liu ◽  
Ke Sun ◽  
Longfei Zeng ◽  
Jing Wang ◽  
Xiangpeng Xiao ◽  
...  

The microstructure and properties of Copper-Graphite Composites (CGC) prepared by spark plasma sintering (SPS) based on two-step mixing and wet milling were investigated. The results showed that Cu powders were rolled into Cu flakes during milling, and their size significantly decreased from 23.2 to 10.9 μm when the graphite content increased from 1.0 wt.% to 2.5 wt.%. The oxidation of Cu powder was avoided during two-step mixing and wet milling. After spark plasma sintering, the graphite powders of the composites were mainly distributed at Cu grain boundaries in granular and flake shapes. The mean size of Cu grains was 9.4 um for 1.0 wt.% graphite content and reduced slightly with the increasing of graphite content. Compared with other conventional methods, the composite prepared by two-step mixing and SPS achieved higher relative density, electrical conductivity, and micro-hardness, which, respectively, reduced from 98.78%, 89.7% IACS (International annealed copper standard), and 64 HV (Vickers-hardness) to 96.56%, 81.3% IACS, and 55 HV when the graphite content increased from 1.0 wt.% to 2.5 wt.%. As the graphite content increases, the friction coefficient and wear rate of the composite decreases. When the graphite content of CGC is 1.0 wt.%, the main wear mechanism was plastic deformation, delamination, adhesive, and fatigue wear. The adhesive and fatigue wear disappeared gradually with the increasing of graphite content.

2020 ◽  
Vol 9 (6) ◽  
pp. 759-768
Author(s):  
Yunhui Niu ◽  
Shuai Fu ◽  
Kuibao Zhang ◽  
Bo Dai ◽  
Haibin Zhang ◽  
...  

AbstractThe synthesis, microstructure, and properties of high purity dense bulk Mo2TiAlC2 ceramics were studied. High purity Mo2TiAlC2 powder was synthesized at 1873 K starting from Mo, Ti, Al, and graphite powders with a molar ratio of 2:1:1.25:2. The synthesis mechanism of Mo2TiAlC2 was explored by analyzing the compositions of samples sintered at different temperatures. It was found that the Mo2TiAlC2 phase was formed from the reaction among Mo3Al2C, Mo2C, TiC, and C. Dense Mo2TiAlC2 bulk sample was prepared by spark plasma sintering (SPS) at 1673 K under a pressure of 40 MPa. The relative density of the dense sample was 98.3%. The mean grain size was 3.5 μm in length and 1.5 μm in width. The typical layered structure could be clearly observed. The electrical conductivity of Mo2TiAlC2 ceramic measured at the temperature range of 2–300 K decreased from 0.95 × 106 to 0.77 × 106 Ω–1·m–1. Thermal conductivity measured at the temperature range of 300–1273 K decreased from 8.0 to 6.4 W·(m·K)–1. The thermal expansion coefficient (TEC) of Mo2TiAlC2 measured at the temperature of 350–1100 K was calculated as 9.0 × 10–6 K–1. Additionally, the layered structure and fine grain size benefited for excellent mechanical properties of low intrinsic Vickers hardness of 5.2 GPa, high flexural strength of 407.9 MPa, high fracture toughness of 6.5 MPa·m1/2, and high compressive strength of 1079 MPa. Even at the indentation load of 300 N, the residual flexural strength could hold 84% of the value of undamaged one, indicating remarkable damage tolerance. Furthermore, it was confirmed that Mo2TiAlC2 ceramic had a good oxidation resistance below 1200 K in the air.


2007 ◽  
Vol 534-536 ◽  
pp. 1229-1232
Author(s):  
Li Hui Zhu ◽  
Guang Jie Shao ◽  
Yi Xiong Liu ◽  
Dave Siddle

WC-10Co-0.8VC nanocrystalline powders were sintered by spark plasma sintering (SPS) and hot pressing sintering (HPS), and the microstructure and properties were compared. Results show that, sintered at 1300°C, the sample prepared by SPS for only 3 minutes has higher density than that prepared by HPS for 60 minutes. SEM and SPM observation shows SPS at 1200°C has a more uniform and finer microstructure, and most of the WC grains are smaller than 100nm. It has a relative density of 95.1%, HV30 of 1887, and KIC of 11.5 MPam1/2. If a suitable sintering parameter is chosen, SPS is a promising consolidation technique to prepare nanocrystalline WC-10Co-0.8VC with improved properties.


2022 ◽  
pp. 131671
Author(s):  
Dina V. Dudina ◽  
Tatyana F. Grigoreva ◽  
Vyacheslav I. Kvashnin ◽  
Evgeniya T. Devyatkina ◽  
Sergey V. Vosmerikov ◽  
...  

2018 ◽  
Vol 145 ◽  
pp. 435-443 ◽  
Author(s):  
Özge Balcı ◽  
Ulrich Burkhardt ◽  
Marcus Schmidt ◽  
Jürgen Hennicke ◽  
M. Barış Yağcı ◽  
...  

Author(s):  
Ojo Jeremiah Akinribide ◽  
Babatunde Abiodun Obadele ◽  
Samuel Olukayode Akinwamide ◽  
Olusola Olaitan Ayeleru ◽  
Mehdi Eizadjou ◽  
...  

2019 ◽  
Vol 103 (9-12) ◽  
pp. 4529-4540 ◽  
Author(s):  
Samuel Ranti Oke ◽  
Oladeji Oluremi Ige ◽  
Oluwasegun Eso Falodun ◽  
Avwerosuoghene M. Okoro ◽  
Mahlatse R. Mphahlele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document