Microstructural characterization and mechanical behaviours of TiN-graphite composites fabricated by spark plasma sintering

Author(s):  
Ojo Jeremiah Akinribide ◽  
Babatunde Abiodun Obadele ◽  
Samuel Olukayode Akinwamide ◽  
Olusola Olaitan Ayeleru ◽  
Mehdi Eizadjou ◽  
...  
2015 ◽  
Vol 47 (3) ◽  
pp. 237-248 ◽  
Author(s):  
D.V. Dudina ◽  
A.V. Ukhina ◽  
B.B. Bokhonov ◽  
V.I. Mali ◽  
A.G. Anisimov ◽  
...  

We report the formation and phase separation response of nickel-graphite composites with variable-architecture phases by graphitization-accompanied consolidation via Spark Plasma Sintering and hot pressing. It was shown that the application of pressure during consolidation is crucial for the occurrence of graphitization and formation of 3D graphite structures. We evaluated the suitability of the synthesized composites as precursors for making porous structures. Nickel behaved as a space holder with the particle size and spatial distribution changing during consolidation with the temperature and determining the structure of porous graphite formed by phase separation by dissolution in HCl. The response of the consolidated Ni-Cgr to separation of carbon by its burnout in air was studied. The result of the carbon removal was either the formation of a dense and continuous NiO film on the surface of the compacts or oxidation through the compact thickness. The choice between these two options depended on the density of the compacts and on the presence of carbon dissolved in nickel. It was found that during the burnout of graphite from Ni-Cgr composites, sintering, rather than formation of pores, dominated.


2019 ◽  
Vol 343 ◽  
pp. 705-713 ◽  
Author(s):  
Jinjuan Cheng ◽  
Xueping Gan ◽  
Shiqiang Chen ◽  
Yuanteng Lai ◽  
Huiwen Xiong ◽  
...  

2006 ◽  
Vol 317-318 ◽  
pp. 155-158
Author(s):  
Sang Mo Koo ◽  
Seung Hwan Shim ◽  
Jong Won Yoon ◽  
Kwang Bo Shim

The dense Pb(Zr0.52Ti0.48)O3 (PZT) piezoelectric ceramics have been prepared at a low temperature by a spark plasma sintering (SPS) method without excess PbO addition and their structural features including domains were systematically investigated. The fine microstructure consisting of submicrometer-sized grains as well as relative density reaching 99% was achieved by sintering at 950°C which is 400°C lower than that of pressureless sintering (PLS). Transmission electron microscopy (TEM) results confirmed that the sintered specimen contained very dense domain structures inside each grain, showing the nanoscaled single-domains even at the small grains (below 100 nm). The SPS-processed PZT exhibited better piezoelectric properties than those of the PLS-processed one, which is attributed to its fine-microstructural feature.


2020 ◽  
Vol 46 (3) ◽  
pp. 2923-2930 ◽  
Author(s):  
Hamid Istgaldi ◽  
Mehdi Shahedi Asl ◽  
Peyman Shahi ◽  
Behzad Nayebi ◽  
Zohre Ahmadi

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1506
Author(s):  
Jinping Liu ◽  
Ke Sun ◽  
Longfei Zeng ◽  
Jing Wang ◽  
Xiangpeng Xiao ◽  
...  

The microstructure and properties of Copper-Graphite Composites (CGC) prepared by spark plasma sintering (SPS) based on two-step mixing and wet milling were investigated. The results showed that Cu powders were rolled into Cu flakes during milling, and their size significantly decreased from 23.2 to 10.9 μm when the graphite content increased from 1.0 wt.% to 2.5 wt.%. The oxidation of Cu powder was avoided during two-step mixing and wet milling. After spark plasma sintering, the graphite powders of the composites were mainly distributed at Cu grain boundaries in granular and flake shapes. The mean size of Cu grains was 9.4 um for 1.0 wt.% graphite content and reduced slightly with the increasing of graphite content. Compared with other conventional methods, the composite prepared by two-step mixing and SPS achieved higher relative density, electrical conductivity, and micro-hardness, which, respectively, reduced from 98.78%, 89.7% IACS (International annealed copper standard), and 64 HV (Vickers-hardness) to 96.56%, 81.3% IACS, and 55 HV when the graphite content increased from 1.0 wt.% to 2.5 wt.%. As the graphite content increases, the friction coefficient and wear rate of the composite decreases. When the graphite content of CGC is 1.0 wt.%, the main wear mechanism was plastic deformation, delamination, adhesive, and fatigue wear. The adhesive and fatigue wear disappeared gradually with the increasing of graphite content.


2007 ◽  
Vol 336-338 ◽  
pp. 1310-1312
Author(s):  
Hai Bo Feng ◽  
De Chang Jia ◽  
Yu Zhou ◽  
Qing Chang Meng

The in situ TiB whisker reinforced titanium matrix composites were prepared by mechanical alloying followed by spark plasma sintering. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to characterize the microstructure of the TiB whiskers. The effect of sintering temperature on morphologies of in situ TiB whiskers was evaluated. With the increase of spark plasma sintering temperature, the average diameter of in situ TiB whiskers increased. The in situ TiB whiskers exhibited a hexagonal shape with (100), (101) and (10 1 ) planes at the transverse section and a growth orientation of [010]TiB direction.


2011 ◽  
Vol 672 ◽  
pp. 241-244 ◽  
Author(s):  
Gabriela Sima ◽  
Mihail Mangra ◽  
Oana Gîngu ◽  
Marius Catalin Criveanu ◽  
Bebe Adrian Olei

The paper presents the experimental results regarding the influence of the reinforcing elements on the wear behavior of Al-matrix composites discontinuously reinforced by SiC and Graphite. This antifriction composite material is processed by Reactive Mechanically Alloyed and then by Spark Plasma Sintering technology. In order to optimize the processing technology, especially the sintering parameters, the Spark Plasma Sintering process was applied because of its advantageous aspects: lower sintering temperatures, shorter sintering time and higher properties values of the sintered material vs. the corresponding ones obtained by the classical sintering route. The authors realized a comparative analysis on the wear behavior of the researched composite materials.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7395
Author(s):  
Joseph Longji Dadiel ◽  
Sugali Pavan Kumar Naik ◽  
Paweł Pęczkowski ◽  
Jun Sugiyama ◽  
Hiraku Ogino ◽  
...  

In this study, high-density magnesium diboride (MgB2) bulk superconductors were synthesized by spark plasma sintering (SPS) under pressure to improve the field dependence of the critical current density (Jc-B) in MgB2 bulk superconductors. We investigated the relationship between sintering conditions (temperature and time) and Jc-B using two methods, ex situ (sintering MgB2 synthesized powder) and in situ (reaction sintering of Mg and B powder), respectively. As a result, we found that higher density with suppressed particle growth and suppression of the formation of coarse particles of MgB4 and MgO were found to be effective in improving the Jc-B characteristics. In the ex situ method, the degradation of MgB2 due to pyrolysis was more severe at temperatures higher than 850 °C. The sample that underwent SPS treatment for a short time at 850 °C showed higher density and less impurity phase in the bulk, which improved the Jc-B properties. In addition, the in situ method showed very minimal impurity with a corresponding improvement in density and Jc-B characteristics for the sample optimized at 750 °C. Microstructural characterization and flux pinning (fP) analysis revealed the possibility of refined MgO inclusions and MgB4 phase as new pinning centers, which greatly contributed to the Jc-B properties. The contributions of the sintering conditions on fP for both synthesis methods were analyzed.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5756
Author(s):  
A. Raja Annamalai ◽  
A. Muthuchamy ◽  
Muthe Srikanth ◽  
Senthilnathan Natarajan ◽  
Shashank Acharya ◽  
...  

The effect of adding molybdenum to the heavy tungsten alloy of W-Ni-Fe on its material characteristics was examined in the current study. The elemental powders of tungsten, iron, nickel, and molybdenum, with a composition analogous to W-3Fe-7Ni-xMo (x = 0, 22.5, 45, 67.5 wt.%), were fabricated using the spark plasma sintering (SPS) technique at a sintering temperature of 1400 °C and under pressure of 50 MPa. The sintered samples were subjected to microstructural characterization and tested for mechanical strength. The smallest grain size of 9.99 microns was observed for the 45W-45Mo alloy. This alloy also gave the highest tensile and yield strengths of 1140 MPa and 763 MPa, respectively. The hardness increased with the increased addition of molybdenum. The high level of hardness was observed for 67.5Mo with a 10.8% increase in the base alloy’s hardness. The investigation resulted in the alloy of 45W-7Ni-3Fe-45Mo, observed to provide optimum mechanical properties among all the analyzed samples.


Sign in / Sign up

Export Citation Format

Share Document