scholarly journals Microstructural Characterization and Crack Propagation Behavior of a Novel β-Solidifying TiAl Alloy

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1231
Author(s):  
Shuling Zhang ◽  
Ning Cui ◽  
Wei Sun ◽  
Qiucheng Li

Novel β-solidifying TiAl alloys have great potential for engineering applications in the aerospace and automotive industries. The introduction of the β0 phase will inevitably affect crack propagation. However, the related mechanism is unclear. In this study, the crack propagation behavior of different β0-containing microstructures was systematically investigated by three-point bending tests. The results show that the coarse γ/α2 lamellar microstructure exhibits better fracture toughness than the fine-grain microstructure because large numbers of γ/α2 lamellar boundaries can effectively hinder crack propagation. The propagation direction depends largely on the orientation of the γ/α2 lamellae. When the angle between the crack propagation direction and the γ/α2 lamellar boundary is small, the crack tends to propagate along γ/α2 lamellae. When the angle is close to 90°, the crack generally propagates by the trans-lamellar mode. Moreover, the crack tends to traverse across the fine β0/γ duplex region due to the low resistance of fine grains in the crack propagation. The transgranular and intergranular modes are the main fracture mechanisms in the microstructure of the fine β0/γ grains. Some shear ligaments can also be identified in the lamellar microstructure and these can consume propagation energy. The enlarged image shows that the crack propagation direction can be changed by the β0 phase, owing to its high hardness. The crack tends to stop at the β0 phase region.

Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1221 ◽  
Author(s):  
Shifu Wang ◽  
Luowei Cao ◽  
Zheng Zhang

The influence of carbide morphology on the deformation and fracture mechanisms of as-received and complete spheroidization 14Cr1MoR steel was investigated using an in situ scanning electron microscope (SEM) under tension testing. During spheroidization damage, the carbide morphology changed from the original lamellar cementite present in pearlite to granular M23C6 carbide, which was concentrated along the ferrite grain boundaries. The yield strength and tensile strength of 14Cr1MoR steel decreased with the increasing degree of spheroidization damage. In situ SEM observations revealed that the deformation and crack initiation started from the ferrite matrix in both as-received and completely spheroidization-damaged 14Cr1MoR steel samples. However, the extension of slip bands and crack propagation behavior of both samples were different during the in situ tensile process, which could be ascribed to the difference in carbide morphology. In the as-received 14Cr1MoR steel sample, hard and brittle lamellar pearlite resulted in high-strength ferrite/ pearlite boundaries, which inhibited the movement of slip bands. With further deformation, the concentration of stress at the crack tip resulted in the emergence and propagation of cracks along the ferrite/pearlite boundaries. In the case of the completely spheroidized 14Cr1MoR steel sample, slip bands bypassed the grain boundary carbide and continuously expanded into the neighboring ferrite grain. In addition, micro-voids and fractures of grain boundary carbides were observed due to the large stress concentration at the front of crack tip. Then, the micro-voids connected with the main crack to complete the crack propagation behavior. The morphological changes of carbides deteriorated the mechanical properties and altered the fracture behavior of 14Cr1MoR steel. It is worth noting that the fracture surface morphology of 14Cr1MoR steel changed from a combination of lamellar fracture and dimpled morphology to a completely dimples-dominated morphology after spheroidization.


2010 ◽  
Vol 135 ◽  
pp. 343-348
Author(s):  
Bo Zhao ◽  
Ling Zhi Kong

Because of the high hardness and high brittleness of ceramics, crack damage would be easy left in the finished surface. This will lower the reliability of ceramics parts. Studies show that Ultrasonic vibration Added Grinding (UAG) can greatly improve the surface quality, but how UAG to reduce the surface/subsurface damage isn’t very clear. To this purpose, the surface/subsurface crack mechanism of the ultrasonic vibration added grinding on ceramics was mainly analyzed in this article. The study shows that ultrasonic vibration can change the crack propagation direction to free surface, rather than propagate to the deep material which will happen in conventional grinding. And this will reduce the surface/subsurface crack defects.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1047
Author(s):  
Wenxiang Jiang ◽  
Xiaoyi Ren ◽  
Jinghao Zhao ◽  
Jianli Zhou ◽  
Jinyao Ma ◽  
...  

An in situ scanning electron microscope (SEM) tensile test for Ni-based single-crystal superalloy was carried out at 1000 °C. The stress displacement was obtained, and the yield strength and tensile strength of the superalloy were 699 MPa and 826 MPa, respectively. The crack propagation process, consisting of Model I crack and crystallographic shearing crack, was determined. More interestingly, the crack propagation path and rate affected by eutectics was directly observed and counted. Results show that the coalescence of the primary crack and second microcrack at the interface of a γ/γ′ matrix and eutectics would make the crack propagation rate increase from 0.3 μm/s to 0.4 μm/s. On the other hand, crack deflection decreased the rate to 0.05 μm/s. Moreover, movement of dislocations in front of the crack was also analyzed to explain the different crack propagation behavior in the superalloy.


2019 ◽  
Vol 29 (9) ◽  
pp. 1882-1888 ◽  
Author(s):  
Wen-juan CHENG ◽  
Yong LIU ◽  
Da-peng ZHAO ◽  
Bin LIU ◽  
Yan-ni TAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document