scholarly journals Analysis of a New SEN Design with an Inner Flow Divider

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1437
Author(s):  
Jesus Gonzalez-Trejo ◽  
Ruslan Gabbasov ◽  
Jose Raul Miranda-Tello ◽  
Ignacio Carvajal-Mariscal ◽  
Francisco Cervantes-de-la-Torre ◽  
...  

To minimize the product imperfections due to slag entrapment and surface defects, the fluid flow pattern inside the mold must be symmetric, commonly named double-roll flow. Thus, the liquid steel must enter into the mold evenly distributed. The submerged entry nozzle (SEN) is crucial in product quality in vertical steel slab continuous casting machines because it distributes the molten steel from the tundish into the mold. This work evaluates the performance of a novel bifurcated nozzle design named “SEN with flow divider”. The symmetry at the outlet ports is obtained by imposing symmetry inside the SEN. The flow divider is a solid barrier attached at the SEN bottom inner wall, the height of which slightly surpasses the upper edges of the outlet ports. The performance analysis is done first using numerical simulations, where the Computational Fluid Dynamics (CFD) technique and the Smoothed Particle Hydrodynamics (SPH) approach are used. Then, experimental tests on a scaled model are also used to evaluate the SEN performance. Numerical and physical simulations showed that the flow divider considerably reduces the SEN outlet jets’ broadness and misalignment, producing compact, aligned, and symmetric jets. Therefore, the SEN design analyzed in this work is a promising alternative to improve process profitability.

2018 ◽  
Vol 203 ◽  
pp. 01001 ◽  
Author(s):  
Vo Nguyen Phu Huan ◽  
Indra Sati H. Harahap ◽  
Wesam Salah Alaloul

Submarine landslide is the most serious threat on both local and regional scales. By way of addition to destroying directly offshore structures, slope failures may also generate destructive tsunami waves. This study has developed a numerical model based on the Smoothed Particle Hydrodynamics (SPH) method to predict four stages of generation, propagation, run-up, and impact of tsunami phenomenon. The numerical predictions in the research were validated with results in the literature and experimental tests. The results of the physical and numerical results presented in this study effort to develop these rule of thumbs to clearly understand some of the mechanics that may play a role in the assessment of tsunami waves.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 354
Author(s):  
Ignacio Nilo Ruiz-Riancho ◽  
Alessio Alexiadis ◽  
Zhibing Zhang ◽  
Alvaro Garcia Hernandez

This paper investigated the mechanical response (including breakage and release of the internal liquid) of single core–shell capsules under compression by means of discrete multi-physics. The model combined Smoothed Particle Hydrodynamics for modelling the fluid and the Lattice Spring Model for the elastic membrane. Thanks to the meshless nature of discrete multi-physics, the model can easily account for the fracture of the capsule’s shell and the interactions between the internal liquid and the solid shell. The simulations replicated a parallel plate compression test of a single core–shell capsule. The inputs of the model were the size of the capsule, the thickness of the shell, the geometry of the internal structure, the Young’s modulus of the shell material, and the fluid’s density and viscosity. The outputs of the model were the fracture type, the maximum force needed for the fracture, and the force–displacement curve. The data were validated by reproducing equivalent experimental tests in the laboratory. The simulations accurately reproduced the breakage of capsules with different mechanical properties. The proposed model can be used as a tool for designing capsules that, under stress, break and release their internal liquid at a specific time.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1604-1611 ◽  
Author(s):  
QING-MING ZHANG ◽  
REN-RONG LONG ◽  
ZHI-FANG LIU ◽  
FENG-LEI HUANG

A series of numerical simulations using SPH (Smoothed Particle Hydrodynamics) method were carried out to study the hypervelocity impact of aluminum spheres on multi-plate structures. Both the morphologic characteristics of debris clouds and the damage of intermediate plates were investigated. The possible damage effects of debris cloud threat on back wall were also described qualitatively. Results showed that, comparing with single plate or double-plate structures, the multi-plate structure has higher resistance capacity to the impact from hypervelocity particles. Hence the multi-plate shield structure has a better shielding performance with a reduction in weight of the structure. It provides a promising alternative to the traditional shield in the spacecraft shield design.


Author(s):  
Muraleekrishnan Menon ◽  
Kamil Szewc ◽  
Vishal Maurya

Abstract Developments in automotive design such as electrification of engines and a growing need to improve driveline efficiency requires adaption of old techniques. The ability to make fast and accurate Computational Fluid Dynamics (CFD) assessment is of high importance to the development of novel powertrains. Consequently, innovative numerical techniques and continuous improvements to existing CFD codes is relevant to ensure reliability. This work extends the capabilities of a Smoothed Particle Hydrodynamics (SPH) code to include multiphase modeling, studied using a gearbox model. A vast majority of CFD codes use grid-based approaches following the Eulerian spatial discretization, which is quite established in engineering applications. Lagrangian based approaches where the moving fluid particles are discretized over time and space present a promising alternative. One of the most common methods of this kind is the Smoothed Particle Hydrodynamics (SPH) method, a fully Lagrangian, particle-based approach for fluid-flow simulations. The main advantage is the absence of numerical grid for computations, which eliminates complexities of interface handling. Nowadays, the SPH approach is more commonly used for hydro-engineering applications involving free-surface flows. New techniques to perform numerical simulations on Graphics Processing Units (GPU) virtually eliminates some of the disadvantages of the method. In this work, we present our multi-GPU solution designed for both GPU-equipped desktops and multi-GPU supercomputers. Fluid dynamic simulations on a single gearbox model is used to validate the multiphase model, by comparing the results with earlier simulations that use a single-phase model omitting air-lubricant interface in the gearbox. The base case in the study is a single bevel gear placed inside a cuboid case with a lubricant depth equivalent to 25% gear diameter. Simulations are performed at various rotational speeds, and corresponding lubricant distribution and churning losses are obtained. The current study targets a comparison of the single-phase and multiphase models in approximating the lubricant distribution and churning loss values at nominal rotational speeds. This serves to standardize the numerical procedure, which will help in improving the accuracy of churning loss calculations through validations against experimental results in the future.


2008 ◽  
Vol 96 (6) ◽  
pp. 263-268 ◽  
Author(s):  
E. Mounif ◽  
V. Bellenger ◽  
A. Ammar ◽  
R. Ata ◽  
P. Mazabraud ◽  
...  

2020 ◽  
Vol 59 (40) ◽  
pp. 18236-18246
Author(s):  
Tianwen Dong ◽  
Yadong He ◽  
Jianchun Wu ◽  
Shiyu Jiang ◽  
Xingyuan Huang ◽  
...  

Author(s):  
Steven J. Lind ◽  
Benedict D. Rogers ◽  
Peter K. Stansby

This paper presents a review of the progress of smoothed particle hydrodynamics (SPH) towards high-order converged simulations. As a mesh-free Lagrangian method suitable for complex flows with interfaces and multiple phases, SPH has developed considerably in the past decade. While original applications were in astrophysics, early engineering applications showed the versatility and robustness of the method without emphasis on accuracy and convergence. The early method was of weakly compressible form resulting in noisy pressures due to spurious pressure waves. This was effectively removed in the incompressible (divergence-free) form which followed; since then the weakly compressible form has been advanced, reducing pressure noise. Now numerical convergence studies are standard. While the method is computationally demanding on conventional processors, it is well suited to parallel processing on massively parallel computing and graphics processing units. Applications are diverse and encompass wave–structure interaction, geophysical flows due to landslides, nuclear sludge flows, welding, gearbox flows and many others. In the state of the art, convergence is typically between the first- and second-order theoretical limits. Recent advances are improving convergence to fourth order (and higher) and these will also be outlined. This can be necessary to resolve multi-scale aspects of turbulent flow.


Sign in / Sign up

Export Citation Format

Share Document