scholarly journals Role of Heat Treatment on Atomic Order and Ordering Domains in Ni45Co5Mn36.6In13.4 Ribbons

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1472
Author(s):  
Yan Feng ◽  
Xueman Wan ◽  
Xiaohai Bian ◽  
Yanling Ai ◽  
Haibo Wang

The effects of cooling rate and annealed temperature on the state of atomic order and microstructure of L21 domains of Ni45Co5Mn36.6In13.4 ribbons are investigated comprehensively. The state of atomic order is quantitatively studied by in situ X-ray diffraction (XRD), and the microstructure of ordered domains is revealed by transmission electron microscopy (TEM). As-spun ribbons show B2 structure of low atomic order, exhibiting the dispersive L21 domains’ morphology. By applying heat treatment around the order–disorder transition temperature followed by furnace cooling or quenching into water, respectively, we found the strong dependence of ordered domains on cooling rates. Furnace cooling samples show L21 domains with small sized antiphase boundary, revealing a high degree of atomic order, while quenching hinders the formation of ordered domains. Annealing above the order–disorder transition temperature followed by quenching preserves the disordered atomic state with the mixture of L21 structure in B2 matrix.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Yun Tian ◽  
Oliver Gutfleisch ◽  
Olle Eriksson ◽  
Levente Vitos

AbstractTetragonal ($${\hbox{L1}}_{0}$$ L1 0 ) FeNi is a promising material for high-performance rare-earth-free permanent magnets. Pure tetragonal FeNi is very difficult to synthesize due to its low chemical order–disorder transition temperature ($$\approx {593}$$ ≈ 593  K), and thus one must consider alternative non-equilibrium processing routes and alloy design strategies that make the formation of tetragonal FeNi feasible. In this paper, we investigate by density functional theory as implemented in the exact muffin-tin orbitals method whether alloying FeNi with a suitable element can have a positive impact on the phase formation and ordering properties while largely maintaining its attractive intrinsic magnetic properties. We find that small amount of non-magnetic (Al and Ti) or magnetic (Cr and Co) elements increase the order–disorder transition temperature. Adding Mo to the Co-doped system further enhances the ordering temperature while the Curie temperature is decreased only by a few degrees. Our results show that alloying is a viable route to stabilizing the ordered tetragonal phase of FeNi.


2011 ◽  
Vol 44 (19) ◽  
pp. 7503-7507 ◽  
Author(s):  
Bryan McCulloch ◽  
Giuseppe Portale ◽  
Wim Bras ◽  
Rachel A. Segalman

1999 ◽  
Vol 111 (6) ◽  
pp. 2789-2796 ◽  
Author(s):  
Gerald Fleischer ◽  
Frank Rittig ◽  
Jörg Kärger ◽  
Christine M. Papadakis ◽  
Kell Mortensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document