scholarly journals Effect of Alternating Magnetic Field on Arc Plasma Characteristics and Droplet Transfer during Narrow Gap Laser-MIG Hybrid Welding

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1712
Author(s):  
Baihao Cai ◽  
Juan Fu ◽  
Yong Zhao ◽  
Fugang Chen ◽  
Yonghui Qin ◽  
...  

In this paper, the morphological characteristics of arc plasma and droplet transfer during the alternating magnetic field-assisted narrow gap groove laser-MIG (metal inert gas) hybrid welding process were investigated. The characteristics of arc plasma and droplet transfer, electron temperature, and density were analyzed using a high-speed camera and spectrum diagnosis. Our results revealed that the arc maintained a relatively stable state and rotated at a high speed to enhance the arc stiffness, and further improved the stability of the arc under the alternating magnetic field. The optimum magnetic field parameters in this experiment were B = 16 mT and f = 20 Hz, the electron temperature was 9893.6 K and the electron density was 0.99 × 1017 cm−3 near the bottom of the groove, which improved the temperature distribution inside the narrow gap groove and eliminated the lack of sidewall fusion defect. Compared to those without a magnetic field, the magnetic field could promote droplet transfer, the droplet diameter decreased by 17.6%, and the transition frequency increased by 23.5% (owing to the centrifugal force during droplet spinning and electromagnetic contraction force). The width of the weld bead was increased by 12.4% and the pores were also significantly reduced due to the stirring of the magnetic field on the molten pool.

2020 ◽  
Vol 99 (1) ◽  
pp. 25s-38s
Author(s):  
JIANG YU ◽  
◽  
BO WANG ◽  
HONGTAO ZHANG ◽  
PENG HE ◽  
...  

The droplet transfer and voltage-current characteristics of gas metal arc welding (GMAW) in single-pulsed GMAW (single GMAW-P), plasma pulsed GMAW (plasma GMAW-P), and plasma-GMAW-P with a magnetic field were studied using the synchronous acquisition system of high-speed camera and electric signals. The results showed the plasma arc and magnetic field had a significant effect on the droplet transfer process. The indirect arc of the plasma and gas metal arc emerged in the pulse peak phase causing a shunt phenomenon of the GMAW current. The period of the indirect arc was increased under the action of the magnetic field. In hybrid plasma GMAW-P, when the GMAW current did not exceed 140 A, several pulsed one-drop free transfers occurred and the droplet transfer period decreased with the increase in the plasma welding current; when the GMAW current exceeded 140 A, and the plasma welding current was less than 180 A, spray transfer was formed. The droplet transfer transformed into a projected transfer when the plasma welding current increased to 180 A. In plasma-GMAW-P hybrid welding with a magnetic field, the magnetic field had a slight effect on the transfer period. When the GMAW current did not exceed 140 A, the droplet transfer was mainly repelled transfer. The detaching location was on the right side of the wire when the magnetic field current was less than 3 A. When the magnetic field current exceeded 3 A, it was below or on the left side of the wire. When the GMAW current exceeded 140 A and the magnetic field current was less than 5 A, spray transfer was formed, but the droplet transfer mode transformed into a projected transfer with a magnetic field current of 5 A.


Author(s):  
G. Gulyamov ◽  
U. I. Erkaboev ◽  
A. G. Gulyamov

The article considers the oscillations of interband magneto-optical absorption in semiconductors with the Kane dispersion law. We have compared the changes in oscillations of the joint density of states with respect to the photon energy for different Landau levels in parabolic and non-parabolic zones. An analytical expression is obtained for the oscillation of the combined density of states in narrow-gap semiconductors. We have calculated the dependence of the maximum photon energy on the magnetic field at different temperatures. A theoretical study of the band structure showed that the magnetoabsorption oscillations decrease with an increase in temperature, and the photon energies nonlinearly depend on a strong magnetic field. The article proposes a simple method for calculating the oscillation of joint density of states in a quantizing magnetic field with the non-quadratic dispersion law. The temperature dependence of the oscillations joint density of states in semiconductors with non-parabolic dispersion law is obtained. Moreover, the article studies the temperature dependence of the band gap in a strong magnetic field with the non-quadratic dispersion law. The method is applied to the research of the magnetic absorption in narrow-gap semiconductors with nonparabolic dispersion law. It is shown that as the temperature increases, Landau levels are washed away due to thermal broadening and density of states turns into a density of states without a magnetic field. Using the mathematical model, the temperature dependence of the density distribution of energy states in strong magnetic fields is considered. It is shown that the continuous spectrum of the density of states, measured at the temperature of liquid nitrogen, at low temperatures turns into discrete Landau levels. Mathematical modeling of processes using experimental values of the continuous spectrum of the density of states makes it possible to calculate discrete Landau levels. We have created the three-dimensional fan chart of magneto optical oscillations of semiconductors with considering for the joint density of energy states. For a nonquadratic dispersion law, the maximum frequency of the absorbed light and the width of the forbidden band are shown to depend nonlinearly on the magnetic field. Modeling the temperature  dependence allowed us to determine the Landau levels in semiconductors in a wide temperature spectrum. Using the proposed model, the experimental results obtained for narrow-gap semiconductors are analyzed. The theoretical results are compared with experimental results.


Author(s):  
Yingzi Chen ◽  
Zhiyuan Yang ◽  
Wenxiong Peng ◽  
Huaiqing Zhang

Magnetic pulse welding is a high-speed welding technology, which is suitable for welding light metal materials. In the magnetic pulse welding system, the field shaper can increase the service life of the coil and contribute to concentrating the magnetic field in the welding area. Therefore, optimizing the structure of the field shaper can effectively improve the efficiency of the system. This paper analyzed the influence of cross-sectional shape and inner angle of the field shaper on the ability of concentrating magnetic field via COMSOL software. The structural strength of various field shapers was also analyzed in ABAQUS. Simulation results show that the inner edge of the field shaper directly affects the deformation and welding effect of the tube. So, a new shape of field shaper was proposed and the experimental results prove that the new field shaper has better performance than the conventional field shaper.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940045 ◽  
Author(s):  
Z. Zhang ◽  
R. Wang ◽  
G. Gou ◽  
H. Chen ◽  
W. Gao

In this paper, we study the droplet transition behavior of narrow gap laser wire filling welding under the condition of changing welding speed and wire feeding speed, and it was observed by high-speed photography. It was found that with the increase of welding speed, the frequency of droplet transfer was reduced and the transition period was prolonged. With the increase of wire feeding speed, the wire was not fully melted and finally inserted into the molten pool.


2000 ◽  
Vol 18 (10) ◽  
pp. 1257-1262 ◽  
Author(s):  
A. V. Pavlov ◽  
T. Abe ◽  
K.-I. Oyama

Abstract. We present a comparison of the electron density and temperature behaviour in the ionosphere and plasmasphere measured by the Millstone Hill incoherent-scatter radar and the instruments on board of the EXOS-D satellite with numerical model calculations from a time-dependent mathematical model of the Earth's ionosphere and plasmasphere during the geomagnetically quiet and storm period on 20–30 January, 1993. We have evaluated the value of the additional heating rate that should be added to the normal photoelectron heating in the electron energy equation in the daytime plasmasphere region above 5000 km along the magnetic field line to explain the high electron temperature measured by the instruments on board of the EXOS-D satellite within the Millstone Hill magnetic field flux tube in the Northern Hemisphere. The additional heating brings the measured and modelled electron temperatures into agreement in the plasmasphere and into very large disagreement in the ionosphere if the classical electron heat flux along magnetic field line is used in the model. A new approach, based on a new effective electron thermal conductivity coefficient along the magnetic field line, is presented to model the electron temperature in the ionosphere and plasmasphere. This new approach leads to a heat flux which is less than that given by the classical Spitzer-Harm theory. The evaluated additional heating of electrons in the plasmasphere and the decrease of the thermal conductivity in the topside ionosphere and the greater part of the plasmasphere found for the first time here allow the model to accurately reproduce the electron temperatures observed by the instruments on board the EXOS-D satellite in the plasmasphere and the Millstone Hill incoherent-scatter radar in the ionosphere. The effects of the daytime additional plasmaspheric heating of electrons on the electron temperature and density are small at the F-region altitudes if the modified electron heat flux is used. The deviations from the Boltzmann distribution for the first five vibrational levels of N2(v) and O2(v) were calculated. The present study suggests that these deviations are not significant at the first vibrational levels of N2 and O2 and the second level of O2, and the calculated distributions of N2(v) and O2(v) are highly non-Boltzmann at vibrational levels v > 2. The resulting effect of N2(v > 0) and O2(v > 0) on NmF2 is the decrease of the calculated daytime NmF2 up to a factor of 1.5. The modelled electron temperature is very sensitive to the electron density, and this decrease in electron density results in the increase of the calculated daytime electron temperature up to about 580 K at the F2 peak altitude giving closer agreement between the measured and modelled electron temperatures. Both the daytime and night-time densities are not reproduced by the model without N2(v > 0) and O2(v > 0), and inclusion of vibrationally excited N2 and O2 brings the model and data into better agreement.Key words: Ionosphere (ionospheric disturbances; ionosphere-magnetosphere interactions; plasma temperature and density)  


2018 ◽  
Vol 16 (6) ◽  
pp. 385-390
Author(s):  
Shikha BINWAL ◽  
Jay K JOSHI ◽  
Shantanu Kumar KARKARI ◽  
Predhiman Krishan KAW ◽  
Lekha NAIR ◽  
...  

A floating emissive probe has been used to obtain the spatial electron temperature (Te) profile in a 13.56 MHz parallel plate capacitive coupled plasma. The effect of an external transverse magnetic field and pressure on the electron temperature profile has been discussed. In the un-magnetised case, the bulk region of the plasma has a uniform Te. Upon application of the magnetic field, the Te profile becomes non-uniform and skewed.  With increase in pressure, there is an overall reduction in electron temperature. The regions adjacent to the electrodes witnessed a higher temperature than the bulk for both cases. The emissive probe results have also been compared with particle-in-cell simulation results for the un-magnetised case.


2017 ◽  
Vol 35 (1) ◽  
pp. 159-169 ◽  
Author(s):  
H. Iftikhar ◽  
S. Bashir ◽  
A. Dawood ◽  
M. Akram ◽  
A. Hayat ◽  
...  

AbstractThe effect of the transverse magnetic field on laser-induced breakdown spectroscopy and surface modifications of germanium (Ge) has been investigated at various fluences. Ge targets were exposed to Nd: YAG laser pulses (1064 nm, 10 ns, 1 Hz) at different fluences ranging from 3 to 25.6 J/cm2 to generate Ge plasma under argon environment at a pressure of 50 Torr. The magnetic field of strength 0.45 Tesla perpendicular to the direction of plasma expansion was employed by using two permanent magnets. The emission spectra of laser-induced Ge plasma was detected by the laser-induced breakdown spectroscopy system. The electron temperature and number density of Ge plasma are evaluated by using the Boltzmann plot and stark broadening methods, respectively. The variations in emission intensity, electron temperature (Te), and number density (ne) of Germanium plasma are explored at various fluences, with and without employment of the magnetic field. It is observed that the magnetic field is responsible for significant enhancement of both excitation temperature and number density at all fluences. It is revealed that an excitation temperature increases from Te,max,without B = 16,190 to Te,max,with B = 20,123 K. Similarly, the two times enhancement in the electron density is observed from ne,max,without B = 2 × 1018 to ne,max,with B = 4 × 1018 cm−3. The overall enhancement in Ge plasma parameters in the presence of the magnetic field is attributed to the Joule heating effect and adiabatic compression. With increasing fluence both plasma parameters increase and achieve their maxima at a fluence of 12.8 J/cm2 and then decrease. In order to correlate the plasma parameters with surface modification, scanning electron microscope analysis of irradiated Ge was performed. Droplets and cones are formed for both cases. However, the growth of ridges and distinctness of features is more pronounced in case of the absence of the magnetic field; whereas surface structures become more diffusive in the presence of the magnetic field.


Author(s):  
Seiya Suzuki ◽  
Akira Satoh ◽  
Muneo Futamura

The present study addresses physical phenomena of a suspension composed of magnetic spherical particles in an alternating magnetic field in order to elucidate particle aggregation phenomena and their influence on heat production. For this objective, we have performed Brownian dynamics simulations in a variety of circumstances of the magnetic field strength and frequency of an alternating magnetic field, and the magnetic dipole-dipole interaction strength. As in a time-independent uniform external magnetic field, large aggregates are formed in the case of strong magnetic particle-particle interactions. However, these clusters exhibit completely different behaviors that are dependent on the frequency of an alternating magnetic field. If the frequency is significantly high, then the viscous torque is the dominant factor, so that the formation of the clusters is not significantly influenced by the time-dependent magnetic field. If the frequency is significantly low, the magnetic field have a significant effect on the rotational motion of the particles, so that the formation of the cluster is dependent on which factor dominates the particle motion between the applied magnetic field and the magnetic particle-particle interaction. If the magnetic interaction is more dominant than the external field, stable chain-like clusters are formed in the field direction, and the magnetic particle-particle interaction induces a significant delay for the moments inclining in the alternating magnetic field direction. This behavior gives rise to a hysteresis loop with a larger area and therefore a large heating effect is obtained.


Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 23 ◽  
Author(s):  
Xu Zhou ◽  
Qing-Kun Wan ◽  
Xiao-Hui Wang

The many-body dynamics of an electron spin−1/2 qubit coupled to a bath of nuclear spins by hyperfine interactions, as described by the central spin model in two kinds of external field, are studied in this paper. In a completely polarized bath, we use the state recurrence method to obtain the exact solution of the X X Z central spin model in a constant magnetic field and numerically analyze the influence of the disorder strength of the magnetic field on fidelity and entanglement entropy. For a constant magnetic field, the fidelity presents non-attenuating oscillations. The anisotropic parameter λ and the magnetic field strength B significantly affect the dynamic behaviour of the central spin. Unlike the periodic oscillation in the constant magnetic field, the decoherence dynamics of the central spin act like a damping oscillation in a disordered field, where the central spin undergoes a relaxation process and eventually reaches a stable state. The relaxation time of this process is affected by the disorder strength and the anisotropic parameter, where a larger anisotropic parameter or disorder strength can speed up the relaxation process. Compared with the constant magnetic field, the disordered field can regulate the decoherence over a large range, independent of the anisotropic parameter.


Sign in / Sign up

Export Citation Format

Share Document