scholarly journals Effect of Fe/SiO2 Ratio and Fe2O3 on the Viscosity and Slag Structure of Copper-Smelting Slags

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Baoren Wang ◽  
Hongying Yang ◽  
Zhenan Jin ◽  
Zhijian Liu ◽  
Mingjun Zou

Secondary copper smelting is an effective means of treating waste resources. During the smelting process, the viscous behavior of the smelting slags is essential for smooth operation. Therefore, the effects of Fe/SiO2 ratio and Fe2O3 contents on the viscous behavior of the FeO−Fe2O3−SiO2−8 wt%CaO−3 wt%MgO−3 wt%Al2O3 slag system were investigated. The slag viscosity and activation energy for viscous flow decrease with increasing Fe/SiO2 from 0.8 to 1.2, and increase as the Fe2O3 content increases from 4 wt% to 16 wt% at Fe/SiO2 ratio of 1.2. However, under the conditions of Fe/SiO2 of 0.8 and 1.0, the viscosity and activation energy for viscous flow show a minimum value at Fe2O3 content of 12 wt%. Fe2O3 exhibits amphoteric properties. In addition, the increase in Fe2O3 content raises the breaking temperature of the slag, while the Fe/SiO2 ratio has the opposite effect. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy show that increases in Fe/SiO2 ratio lead to simplification of the silicate network structure, while increases in Fe2O3 content improves the formability of the network. This study provides theoretical support for the related research and application of secondary copper smelting.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Youngjae Kim ◽  
Hyunsik Park

AbstractAlong with the increasing demand for the TiO2 pigment, the ilmenite smelting process has also become significant because it can utilize both rock- and sand-type ilmenite. However, due to the high liquidus temperature of the TiO2 slag system, the smelting process is highly energy consuming. In the present study, the viscosity of molten ilmenite slag was estimated using molecular dynamic simulations at a high temperature to achieve an appropriate and efficient slag design. To verify the validity of the simulation technique, experimental measurements were performed in parallel and their results were compared. The effects of FeO and Na2O addition on viscosity of TiO2 slag were also investigated. The addition of Na2O as a flux enhanced the ilmenite smelting process by not only lowering the liquidus temperature but also slowing the drastic viscosity increase. Statistical information obtained from the molecular dynamic simulations revealed a three-dimensional TiO6 octahedral network structure. The relationship between viscosity and structural change with varying FeO and Na2O concentrations was explored considering the coordination number of Ti and various bonding types.


2012 ◽  
Vol 535-537 ◽  
pp. 2503-2506
Author(s):  
Xiang Zhu ◽  
Hong Ming Wang ◽  
Gui Rong Li ◽  
Yu Tao Zhao

Based on the coexistence theory of slag structure, the activity model of CaO-SiO2-Fe2O3 ternary slag system was established. The effects of Fe2O3 content and basicity on the activities of CaO and 2CaO•SiO2 were investigated. The structure units of Fe2O3 in the molten slag were discussed. The results indicate the slag basicity has a significant influence on the activities of CaO and 2CaO•SiO2. The activity of CaO increases with increasing slag basicity, while the activity of 2CaO•SiO2 increases with the increasing of slag basicity when the basicity is less than 1.8, which reaches the maximum value when the basicity is 1.8. In another word, when the slag basicity exceeds 1.8, the activity of 2CaO•SiO2 decreases with the increasing of slag basicity. In addition, the activities of CaO and 2CaO•SiO2 can be decreased by Fe2O3. Moreover, when the slag basicity is higher than 2.0, the activity of 2CaO•SiO2 increases slightly with the increasing of Fe2O3 content. The main structure units of Fe2O3 in molten slag are closely related to the slag basicity.


Author(s):  
Jian Zhang ◽  
Zhengjian Liu ◽  
Jianliang Zhang ◽  
Cui Wang ◽  
Hengbao Ma ◽  
...  

With the increased use of laterite nickel ore, the impact of high Al2O3 slag on blast furnace smelting has gradually increased. In this paper, the effects of slag basicity and Al2O3 content on slag viscosity and enthalpy change under constant temperature conditions was investigated. The changes in slag structure were analyzed by activation energy and Fourier Transform Infrared (FT-IR) spectroscopy. The relationship between slag components and slag temperature and viscosity when slag heat is reduced was investigated. The results showed that the viscosity first slightly decreased and then significantly increased with increasing basicity at constant temperature. With the addition of Al2O3 content, the viscosity of the slag increases. The activation energy increases with increasing slag basicity and Al2O3. With increasing basicity, the [SiO4]4- tetrahedral unit trough depth becomes shallow, the [AlO4]5- asymmetric stretching band migrates to lower wave numbers, and the slag structure depolymerizes. With the increase of Al2O3 content, the trough of [SiO4]4- tetrahedra deepens and the center of the symmetric stretching band moves to a higher wave number. The [AlO4]5- asymmetric stretching band becomes obvious, indicating the complexity of the slag structure. When the heat decreases, the slag temperature increases as the basicity increases, and the slag thermal stability is better at the basicity of 0.95-1.05. As the Al2O3 content increases, the thermal stability of the slag becomes worse.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Hao Liu ◽  
Yuelin Qin ◽  
Yanhua Yang ◽  
Qianying Zhang ◽  
Nengyun Deng

The increasing usage of iron ores with high Al2O3 content significantly increases the amount of Al2O3 in blast furnace slag and consequently affects its performance. This work uses slag sampled on site to study the effects of changes in Al2O3 content on the fluidity of the CaO–SiO2–Al2O3–MgO–TiO2 slag system that is characterized by high Al2O3 and low TiO2 contents, as well as on the phase transition law during the cooling process. Slag viscosity exhibits a rising trend with an increase in Al2O3 content, and Al2O3 in the tested slag is alkaline. The viscous flow activation energy of molten slag rises from 157 kJ/mol to 172 kJ/mol with an increase in Al2O3 content, and the viscous flow units in the slag become large and complicated. When slag is cooled, the main precipitated phase is melilitite. Spinel, perovskite, and olivine are also observed. The crystallization amount of the melilitite phase decreases constantly with an increase in Al2O3 content.


2015 ◽  
Vol 6 (3) ◽  
pp. 464-468 ◽  
Author(s):  
Wang Mei ◽  
Liu Guorui ◽  
Jiang Xiaoxu ◽  
Liu Wenbin ◽  
Li Li ◽  
...  

2020 ◽  
Vol 117 (2) ◽  
pp. 201
Author(s):  
Wenguo Liu ◽  
Xiangdong Xing ◽  
Haibin Zuo

The viscous behavior and potassium removal capacity of CaO–SiO2–8wt%MgO–17wt%Al2O3–2.5wt%BaO–K2O slag system with CaO/SiO2 of 1.07 were studied. The effect of K2O content ranging from 0 to 5 wt% on the viscosity, slag structure, apparent activation energy and potassium removal rate of present slag were analyzed. The results showed that with increase of K2O content in slag, the viscosity and apparent activation energy tended to increase. When adding K2O into the present slag, K+ ion rather than Ba2+ could preferentially compensate [AlO4] tetrahedron and more complex network structures would be formed, leading to higher polymerization degree of slag. The potassium removal rate was related to the reduction degree of K+ by carbon, and with rising of temperature and increasing of K2O content there was a decreasing trend for the potassium removal capacity of slag.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1169
Author(s):  
Youngjae Kim ◽  
Dong-Joon Min

In the present study, the viscosity of the CaO–SiO2–FeO–Al2O3–MgO slag system was measured for the recovery of FeO in the electric arc furnace (EAF) process using Al dross. Considering the MgO-saturated operational condition of the EAF, the viscosity was measured in the MgO-saturated composition at 1823 K with varying FeO and Al2O3 concentrations. An increase in the slag viscosity with decreasing temperature was observed. The activation energy was evaluated, and the change in the thermodynamically equilibrated phase was considered. The changes in the aluminate structure with varying FeO and Al2O3 concentrations were investigated by Fourier-transform infrared spectroscopy, which revealed an increase in the [AlO4] tetrahedral structure with increasing Al2O3 concentration. Depolymerization of the aluminate structure was observed at higher FeO concentrations. The Raman spectra showed the polymerization of the silicate network structure at higher Al2O3 concentrations. By associations between the silicate and aluminate structures, a more highly polymerized slag structure was achieved in the present system by increasing the Al2O3 concentration.


2013 ◽  
Author(s):  
Dongxing Wang ◽  
Yan Liu ◽  
Zimu Zhang ◽  
Pin Shao ◽  
Ting'an Zhang

Sign in / Sign up

Export Citation Format

Share Document