scholarly journals Powder Particle Size Effects on Microstructure and Mechanical Properties of Mechanically Alloyed ODS Ferritic Steels

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Moisés Oñoro ◽  
Julio Macías-Delgado ◽  
María A. Auger ◽  
Jan Hoffmann ◽  
Vanessa de Castro ◽  
...  

Reduced activation ferritic (RAF) steels are expected to be widely used in challenging nuclear industrial applications under severe thermo-mechanical regimes and intense neutron loads. Therefore, actual research panorama is facing the strengthening strategies necessary to maximize both performance and endurance under these conditions. Oxide dispersion strengthened (ODS) RAF steels are leader candidates as structural materials in fusion energy reactors thanks to the reinforcement obtained with a fine dispersion of nanosized oxides in their matrix. In this study, the influence of the initial powder particle size and the selected processing route on the final material has been investigated. Two RAF ODS steels coming from atomized pre-alloyed powders with nominal particle powder sizes of 70 and 30 µm and composition Fe-14Cr-2W-0.4Ti-0.3Y2O3 (wt. %) were manufactured by mechanical alloying. Alloyed powders were compacted by hot isostatic pressing, hot crossed rolled, and annealed at 1273 K. Initial powder particle size differences minimize after milling. Both steels present an almost completely recrystallized material and similar grain sizes. The same type and distributions of secondary phases, Cr-W-rich, Ti-rich, and Y-Ti oxide nanoparticles, have been also characterized by transmission electron microscopy (TEM) in both alloy samples. The strengthening effect has been confirmed by tensile and Charpy impact tests. The two alloys present similar strength values with slightly better ductile brittle transition temperature (DBTT) and ductility for the steel produced with the smaller powder size.

2011 ◽  
Vol 188 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Giedrius Laukaitis ◽  
Darius Virbukas ◽  
Julius Dudonis ◽  
Oresta Katkauskė ◽  
Darius Milčius

2014 ◽  
Vol 936 ◽  
pp. 1694-1700
Author(s):  
Zhi Wei Li ◽  
Kai Yong Jiang ◽  
Fei Wang ◽  
Ji Liang Zhang

This paper mainly introduces the mechanism of microwave heating: electric conduction loss, eddy current loss and arc discharge. The microwave heating behavior of 316 stainless steel powder body which made by gel casting was investigated in the paper. Experiments on different microwave power, powder particle size, and the content of auxiliary heating material showed that the smaller the powder particle size, the larger microwave power and auxiliary heating materials help 316 stainless steel body for sintering.


2014 ◽  
Vol 46 (3) ◽  
pp. 365-375
Author(s):  
N. Labus ◽  
S. Mentus ◽  
Z.Z. Djuric ◽  
M.V. Nikolic

The influence of air and nitrogen atmosphere during heating on TiO2 nano and micro sized powders as well as sintered polycrystalline specimens was analyzed. Sintering of TiO2 nano and micro powders in air atmosphere was monitored in a dilatometer. Non compacted nano and micro powders were analyzed separately in air and nitrogen atmospheres during heating using thermo gravimetric (TG) and differential thermal analysis (DTA). The anatase to rutile phase transition temperature interval is influenced by the powder particle size and atmosphere change. At lower temperatures for nano TiO2 powder a second order phase transition was detected by both thermal techniques. Polycrystalline specimens obtained by sintering from nano powders were reheated in the dilatometer in nitrogen and air atmosphere, and their shrinkage is found to be different. Powder particle size influence, as well as the air and nitrogen atmosphere influence was discussed.


2016 ◽  
Vol 43 (2) ◽  
pp. 0203007
Author(s):  
闫岸如 Yan Anru ◽  
杨恬恬 Yang Tiantian ◽  
王燕灵 Wang Yanling ◽  
马志红 Ma Zhihong ◽  
杜云 Du Yun ◽  
...  

2020 ◽  
Vol 989 ◽  
pp. 816-820
Author(s):  
Roman Sergeevich Khmyrov ◽  
R.R. Ableyeva ◽  
Tatiana Vasilievna Tarasova ◽  
A.V. Gusarov

Mass transfer in the laser-interaction zone at selective laser melting influences the quality of the obtained material. Powder particles displacement during the formation of the single bead is experimentally studied. The so-called denudated zone was visualized by metallography. It was determined that increasing the powder particle size leads to widening the denudated zone. This can signify that the adhesion forces between powder particles prevail over the friction forces.


Sign in / Sign up

Export Citation Format

Share Document