scholarly journals Effect of Hydrogen on the Wear Resistance of Steels upon Contact with Plasma Electrolytic Oxidation Layers Synthesized on Aluminum Alloys

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 280 ◽  
Author(s):  
Volodymyr Hutsaylyuk ◽  
Mykhailo Student ◽  
Volodymyr Dovhunyk ◽  
Volodymyr Posuvailo ◽  
Oleksandra Student ◽  
...  

The different nature of the effect of hydrogen on the tribological behavior of two carbon steels (st. 45 and st. U8) upon their contact with super solid plasma electrolytic oxidation (PEO) layers synthesized on two light alloys (AMg-6 and D16T alloys as the analogists of the A 95556 UNS USA and AA2024 ANSI USA alloys correspondently) was investigated in the medium of mineral oil of the I-20 type. To compare the effect of hydrogenation on the tribological properties of the analyzed contact pairs, similar tests were also performed on the same mineral oil with clear water or an aqueous solution of glycerine added to its content. A spinel-type film (hercynite) was formed upon friction of two contacting surfaces—the iron-carbon steels and PEO layers synthesized on the AMg-6 alloy. This film was a reliable protection against wear of the surface subjected to the effect of hydrogen. When steels came into contact with the PEO layers synthesized on the D16T alloy, surface protection against wear was ensured by another mechanism. The phenomenon of selective metal transfer in the friction zone (from one to another friction surfaces) was revealed.

Wear ◽  
2013 ◽  
Vol 301 (1-2) ◽  
pp. 434-441 ◽  
Author(s):  
M. Treviño ◽  
R.D. Mercado-Solis ◽  
R. Colás ◽  
A. Pérez ◽  
J. Talamantes ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 270
Author(s):  
Dah-Shyang Tsai ◽  
Chen-Chia Chou

Plasma electrolytic oxidation (PEO) has attracted increasing attention since the transportation industry adopts more lightweight metal components and requires an improved version of anodizing for surface protection. In response to the demand, researchers enrich the technical connotation of PEO through diversifying the growth paths and adopting new precursors. Foreign electrolyte additives, involving ceramic and polymeric particles, organic dye emulsions, are incorporated to accomplish various goals. On the other hand, significant progress has been made on comprehension of softening sparks; denoting the adverse trend of growing discharge intensity can be re-routed by involving cathodic current. I–V response shows the cathodic pulse current not only cools down the ensuing anodic pulse, but also twists the coating conductivity, and the residuals of twists accumulate over a long time frame, plausibly through oxide protonation. Thus, the cathodic current provides a tool to control the discharge intensity via integration of the coating conductivity deviations. So far, these cathodic current studies have been performed in the electrolytes of KOH and Na2SiO3. When exotic additives are included, for example Cr2O3, the cathodic current effect is also shifted, as manifested in remarkable changes in its current–voltage (I–V) behavior. We anticipate the future study on cathodic current influences of inclusion shall lead to a precise control of micro arc.


2015 ◽  
Vol 53 (8) ◽  
pp. 535-540 ◽  
Author(s):  
Young Gun Ko ◽  
Dong Hyuk Shin ◽  
Hae Woong Yang ◽  
Yeon Sung Kim ◽  
Joo Hyun Park ◽  
...  

Author(s):  
Veta Mukaeva ◽  
E. Parfenov ◽  
R. Mukaev ◽  
M. Gorbatkov

The issue of modeling the distribution of the electric field in the electrolyzer during the plasma-electrolytic oxidation of a magnesium alloy for the motivation and formation of professional competencies for students in the study of electrical engineering disciplines is considered.


Sign in / Sign up

Export Citation Format

Share Document