scholarly journals A Role for Inositol Pyrophosphates in the Metabolic Adaptations to Low Phosphate in Arabidopsis

Metabolites ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 601
Author(s):  
Eric S. Land ◽  
Caitlin A. Cridland ◽  
Branch Craige ◽  
Anna Dye ◽  
Sherry B. Hildreth ◽  
...  

Phosphate is a major plant macronutrient and low phosphate availability severely limits global crop productivity. In Arabidopsis, a key regulator of the transcriptional response to low phosphate, phosphate starvation response 1 (PHR1), is modulated by a class of signaling molecules called inositol pyrophosphates (PP-InsPs). Two closely related diphosphoinositol pentakisphosphate enzymes (AtVIP1 and AtVIP2) are responsible for the synthesis and turnover of InsP8, the most implicated molecule. This study is focused on characterizing Arabidopsis vip1/vip2 double mutants and their response to low phosphate. We present evidence that both local and systemic responses to phosphate limitation are dampened in the vip1/vip2 mutants as compared to wild-type plants. Specifically, we demonstrate that under Pi-limiting conditions, the vip1/vip2 mutants have shorter root hairs and lateral roots, less accumulation of anthocyanin and less accumulation of sulfolipids and galactolipids. However, phosphate starvation response (PSR) gene expression is unaffected. Interestingly, many of these phenotypes are opposite to those exhibited by other mutants with defects in the PP-InsP synthesis pathway. Our results provide insight on the nexus between inositol phosphates and pyrophosphates involved in complex regulatory mechanisms underpinning phosphate homeostasis in plants.

2018 ◽  
Vol 20 (5) ◽  
pp. 1782-1793 ◽  
Author(s):  
Qian Wang ◽  
Yoon-Suk Kang ◽  
Abdullah Alowaifeer ◽  
Kaixiang Shi ◽  
Xia Fan ◽  
...  

PROTEOMICS ◽  
2006 ◽  
Vol 6 (5) ◽  
pp. 1495-1511 ◽  
Author(s):  
Wanda Maria Almeida von Krüger ◽  
Leticia Miranda Santos Lery ◽  
Marcia Regina Soares ◽  
Fernanda Saloum de Neves-Manta ◽  
Celia Maria Batista e Silva ◽  
...  

PROTEOMICS ◽  
2006 ◽  
Vol 6 (12) ◽  
pp. 3582-3601 ◽  
Author(s):  
Le Thi Hoi ◽  
Birgit Voigt ◽  
Britta Jürgen ◽  
Armin Ehrenreich ◽  
Gerhard Gottschalk ◽  
...  

2019 ◽  
Author(s):  
Omri M. Finkel ◽  
Isai Salas-González ◽  
Gabriel Castrillo ◽  
Stijn Spaepen ◽  
Theresa F. Law ◽  
...  

AbstractPhosphate starvation response (PSR) in non-mycorrhizal plants comprises transcriptional reprogramming resulting in severe physiological changes to the roots and shoots and repression of plant immunity. Thus, plant-colonizing microorganisms – the plant microbiota – are exposed to direct influence by the soil’s phosphorous (P) content itself, as well as to the indirect effects of soil P on the microbial niches shaped by the plant. The individual contribution of these factors to plant microbiota assembly remains unknown. To disentangle these direct and indirect effects, we planted PSR-deficient Arabidopsis mutants in a long-term managed soil P gradient, and compared the composition of their shoot and root microbiota to wild type plants across different P concentrations. PSR-deficiency had a larger effect on the composition of both bacterial and fungal plant-associated microbiota composition than P concentrations in both roots and shoots. The fungal microbiota was more sensitive to P concentrationsper sethan bacteria, and less depended on the soil community composition.Using a 185-member bacterial synthetic community (SynCom) across a wide P concentration gradient in an agar matrix, we demonstrated a shift in the effect of bacteria on the plant from a neutral or positive interaction to a negative one, as measured by rosette size. This phenotypic shift is accompanied by changes in microbiota composition: the genusBurkholderiais specifically enriched in plant tissue under P starvation. Through a community drop-out experiment, we demonstrate that in the absence ofBurkholderiafrom the SynCom, plant shoots accumulate higher phosphate levels than shoots colonized with the full SynCom, only under P starvation, but not under P-replete conditions. Therefore, P-stressed plants allow colonization by latent opportunistic competitors found within their microbiome, thus exacerbating the plant’s P starvation.


Sign in / Sign up

Export Citation Format

Share Document