scholarly journals Analysis of the Downscaling Effect and Definition of the Process Fingerprints in Micro Injection of Spiral Geometries

Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 335 ◽  
Author(s):  
Antonio Luca ◽  
Oltmann Riemer

Microinjection moulding has been developed to fulfil the needs of mass production of micro components in different fields. A challenge of this technology lies in the downscaling of micro components, which leads to faster solidification of the polymeric material and a narrower process window. Moreover, the small cavity dimensions represent a limit for process monitoring due to the inability to install in-cavity sensors. Therefore, new solutions must be found. In this study, the downscaling effect was investigated by means of three spiral geometries with different cross sections, considering the achievable flow length as a response variable. Process indicators, called “process fingerprints”, were defined to monitor the process in-line. In the first stage, a relationship between the achievable flow length and the process parameters, as well as between the process fingerprints and the process parameters, was established. Subsequently, a correlation analysis was carried out to find the process indicators that are mostly related to the achievable flow length.

2017 ◽  
Vol 1 (21) ◽  
pp. 49-63
Author(s):  
Zdzisław Kaliniewicz ◽  
Piotr Markowski ◽  
Andrzej Anders ◽  
Paweł Tylek ◽  
Zbigniew Krzysiak ◽  
...  

The basic dimensions and the mass of common beech nuts and seeds from five nut batches, harvested from tree stands in northern Poland, were determined. Environmental conditions had a greater influence on seed plumpness than the age of tree stands. The results of measurements were analyzed statistically by analysis of variance, correlation analysis and linear regression analysis. Despite differences in their plumpness, nuts were characterized by nearly identical cross-sections which resembled an equilateral triangle. The thickness of nuts and seeds was highly correlated with their mass, and this information can facilitate seed husking and separation into mass categories. Before and after husking, seeds should be separated with the use of a mesh screen with longitudinal openings. Medium-sized (most numerous) seeds were separated into the following plumpness categories using a screen separator with ≠6 mm and ≠7 mm openings: 84% of moderately plump seeds, 3% of seeds with reduced plumpness, and 13% of plump seeds.


Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter discusses a direct approach to the calculation of the rate constant k(T) that bypasses the detailed state-to-state reaction cross-sections. The method is based on the calculation of the reactive flux across a dividing surface on the potential energy surface. Versions based on classical as well as quantum mechanics are described. The classical version and its relation to Wigner’s variational theorem and recrossings of the dividing surface is discussed. Neglecting recrossings, an approximate result based on the calculation of the classical one-way flux from reactants to products is considered. Recrossings can subsequently be included via a transmission coefficient. An alternative exact expression is formulated based on a canonical average of the flux time-correlation function. It concludes with the quantum mechanical definition of the flux operator and the derivation of a relation between the rate constant and a flux correlation function.


2021 ◽  
Vol 76 (3) ◽  
pp. 175-194
Author(s):  
A. Fischer ◽  
B. Scholtes ◽  
T. Niendorf

Abstract In order to improve properties of complex automotive components, such as crankshafts, in an application-oriented way, several surface hardening treatments can be applied. Concerning the material performance the definition of adequate process parameters influences the resulting surface properties and, thus, the effectiveness of surface hardening treatments. To analyze most relevant process-microstructure-property relationships, the present paper reports results obtained by two different well-established surface hardening procedures, i. e. deep rolling as a mechanical treatment and induction hardening as a thermal treatment. For each hardening process widely used crankshaft steel grades, i. e. a medium carbon 38MnSiVS5 microalloyed steel and a quenched and tempered 42CrMo4 were selected and thoroughly characterized upon processing, using equal parameter settings. The results reveal that deep rolling in contrast to induction hardening proves to be a less sensitive surface layer treatment with regard to small differences in the initial microstructure, the chemical composition and the applied process parameters. Differences in microstructure evolution with respect to the applied surface hardening treatment are studied and discussed for the highly stressed fillet region of automotive crankshaft sections for all conditions. In this context, high-resolution SEM-based techniques such as EBSD and ECCI are proven to be very effective for fast qualitative evaluation of induced microstructural changes.


Author(s):  
Yuta Otsuka ◽  
Hirokazu Tsukaya

AbstractOrganisms have a variety of three-dimensional (3D) structures that change over time. These changes include twisting, which is 3D deformation that cannot happen in two dimensions. Twisting is linked to important adaptive functions of organs, such as adjusting the orientation of leaves and flowers in plants to align with environmental stimuli (e.g. light, gravity). Despite its importance, the underlying mechanism for twisting remains to be determined, partly because there is no rigorous method for quantifying the twisting of plant organs. Conventional studies have relied on approximate measurements of the twisting angle in 2D, with arbitrary choices of observation angle. Here, we present the first rigorous quantification of the 3D twisting angles of Arabidopsis petioles based on light sheet microscopy. Mathematical separation of bending and twisting with strict definition of petiole cross-sections were implemented; differences in the spatial distribution of bending and twisting were detected via the quantification of angles along the petiole. Based on the measured values, we discuss that minute degrees of differential growth can result in pronounced twisting in petioles.


2018 ◽  
Vol 2 (3) ◽  
pp. 55 ◽  
Author(s):  
Piera Alvarez ◽  
M. Montealegre ◽  
Jose Pulido-Jiménez ◽  
Jon Arrizubieta

Laser Cladding is one of the leading processes within Additive Manufacturing technologies, which has concentrated a considerable amount of effort on its development. In regard to the latter, the current study aims to summarize the influence of the most relevant process parameters in the laser cladding processing of single and compound volumes (solid forms) made from AISI 316L stainless steel powders and using a coaxial nozzle for their deposition. Process speed, applied laser power and powder flow are considered to be the main variables affecting the laser cladding in single clads, whereas overlap percentage and overlapping strategy also become relevant when dealing with multiple clads. By setting appropriate values for each process parameter, the main goal of this paper is to develop a processing window in which a good metallurgical bond between the delivered powder and the substrate is obtained, trying simultaneously to maintain processing times at their lowest value possible. Conventional metallography techniques were performed on the cross sections of the laser tracks to measure the effective dimensions of clads, height and width, as well as the resulting dilution value. Besides the influence of the overlap between contiguous clads and layers, physical defects such as porosity and cracks were also evaluated. Optimum process parameters to maximize productivity were defined as 13 mm/s, 2500 W, 30% of overlap and a 25 g/min powder feed rate.


1970 ◽  
Vol 48 (2) ◽  
pp. 341-359 ◽  
Author(s):  
Lalit M. Srivastava

The origin of sieve elements and parenchyma cells in the secondary phloem of Austrobaileya was studied by use of serial cross sections stained with tannic acid – ferric chloride and lacmoid. In three important respects, Austrobaileya phloem recalls gymnospermous features: it has sieve cells rather than sieve-tube members; a significant proportion of sieve elements and companion cells arise independently of each other; and sieve areas occur between sieve elements and companion cells ontogenetically unrelated to each other. The angiospermous feature includes origin of most sieve elements and parenchyma, including companion cells, after divisions in phloic initials. In these instances companion cells show a closer ontogenetic relationship to sieve elements than do other parenchyma cells. The combination of gymnospermous and angiospermous features makes phloem of Austrobaileya unique when compared to that of all those species that have been investigated in detail. It is further suggested that the term albuminous cells is inappropriate and should be replaced by companion cells but that the ontogenetic relationship implicit in the definition of companion cells is too restrictive and should be abandoned.


2018 ◽  
Vol 14 (3) ◽  
pp. 409 ◽  
Author(s):  
Philipp Ter Haar

Purpose: The level of innovation is essential for a company’s or country’s competitive advantage and the ways to measure innovation are manifold. The review aims to give an overview over the continuously growing body on approaches to measure innovation.Design/methodology/approach: A new definition of innovation measuring is proposed. Based on this definition a structured approach for researching the literature was applied. A selection of 30 advances is discussed and a 4-level-of-analysis-framework is applied to review the broad research on measuring innovation on individual, work team, company and country level.Findings: The narrative review shows that specific measuring frameworks exists for each level of analysis. Output oriented indicators can be found on all levels, they are complemented by potential enablers on country level, process indicators on company and project level and behavioural indicators on individual level. Approaches specifically focussing on work teams could not be found.Research limitations/implications: Further research is needed on specific advances on measuring innovation on work-team level.Practical implications: By discussing key characteristics of the reviewed studies, the analysis will help decision makers to choose a fitting approach and support researchers by identifying open fields of research. It is recommended to research on advances to measure innovation on work team level to close the existing gap.Originality/value: While influences on innovation are extensively discussed a comprehensive overview over the approaches to identify the effects of modifying these influences is missing. This paper intends to closes this gap.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 373 ◽  
Author(s):  
César Ayabaca ◽  
Carlos Vila

Material removal technologies should be thoroughly analyzed not only to optimize operations but also to minimize the different waste emissions and obtain cleaner production centers. The study of environmental sustainability in manufacturing processes, which is rapidly gaining importance, requires activity modeling with material and resource inputs and outputs and, most importantly, the definition of a balanced scorecard with suitable indicators for different levels, including the operational level. This paper proposes a metrics deployment approach for the different stages of the product life cycle, including a conceptual framework of high-level indicators and the definition of machining process indicators from different perspectives. This set of metrics enables methodological measurement and analysis and integrates the results into aggregated indicators that can be considered for continuous improvement strategies. This approach was validated by five case studies of experimental testing of the sustainability indicators in material removal operations. The results helped to confirm or modify the approach and to adjust the parameter definitions to optimize the initial sustainability objectives.


Sign in / Sign up

Export Citation Format

Share Document