scholarly journals Oscillating U-Shaped Body for Underwater Piezoelectric Energy Harvester Power Optimization

Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 737 ◽  
Author(s):  
Iñigo Aramendia ◽  
Aitor Saenz-Aguirre ◽  
Ana Boyano ◽  
Unai Fernandez-Gamiz ◽  
Ekaitz Zulueta

Vibration energy harvesting (VeH) techniques by means of intentionally designed mechanisms have been used in the last decade for frequency bandwidth improvement under excitation for adequately high-vibration amplitudes. Oil, gas, and water are vital resources that are usually transported by extensive pipe networks. Therefore, wireless self-powered sensors are a sustainable choice to monitor in-pipe system applications. The mechanism, which is intended for water pipes with diameters of 2–5 inches, contains a piezoelectric beam assembled to the oscillating body. A novel U-shaped geometry of an underwater energy harvester has been designed and implemented. Then, the results have been compared with the traditional circular cylinder shape. At first, a numerical study has been carried at Reynolds numbers Re = 3000, 6000, 9000, and 12,000 in order to capture as much as kinetic energy from the water flow. Consequently, unsteady Reynolds Averaged Navier–Stokes (URANS)-based simulations are carried out to investigate the dynamic forces under different conditions. In addition, an Adaptive Differential Evolution (JADE) multivariable optimization algorithm has been implemented for the optimal design of the harvester and the maximization of the power extracted from it. The results show that the U-shaped geometry can extract more power from the kinetic energy of the fluid than the traditional circular cylinder harvester under the same conditions.

2018 ◽  
Vol 2 (1) ◽  
pp. 1870001 ◽  
Author(s):  
Anuruddh Kumar ◽  
Raj Kiran ◽  
Sidhant Kumar ◽  
Vishal S. Chauhan ◽  
Rajeev Kumar ◽  
...  

1991 ◽  
Vol 225 ◽  
pp. 557-574 ◽  
Author(s):  
Saul S. Abarbanel ◽  
Wai Sun Don ◽  
David Gottlieb ◽  
David H. Rudy ◽  
James C. Townsend

A detailed numerical study of two-dimensional flow past a circular cylinder at moderately low Reynolds numbers has been conducted using three different numerical algorithms for solving the time-dependent compressible Navier–Stokes equations. It was found that if the algorithm and associated boundary conditions were consistent and stable, then the major features of the unsteady wake were well predicted. However, it was also found that even stable and consistent boundary conditions could introduce additional periodic phenomena reminiscent of the type seen in previous wind-tunnel experiments. However, these additional frequencies were eliminated by formulating the boundary conditions in terms of the characteristic variables. An analysis based on a simplified model provides an explanation for this behaviour.


2017 ◽  
Vol 2 (1) ◽  
pp. 1700084 ◽  
Author(s):  
Anuruddh Kumar ◽  
Raj Kiran ◽  
Sidhant Kumar ◽  
Vishal S. Chauhan ◽  
Rajeev Kumar ◽  
...  

1976 ◽  
Vol 98 (2) ◽  
pp. 303-307 ◽  
Author(s):  
P. C. Jain ◽  
B. S. Goel

A numerical investigation of an unsteady laminar forced convection from a circular cylinder is presented. The Navier-Stokes equations and the energy equation for an unsteady incompressible fluid flow are solved by the finite difference method. The results are obtained at Reynolds numbers 100 and 200. The temperature field around the cylinder is obtained throughout the region of computation and is shown by isotherms at different times. The variations of the local Nusselt number around the cylinder at different times are computed and shown by graphs. The mean Nusselt number and the Strouhal number are also calculated. The computed results are compared with the other available experimental and theoretical results and are found to be in good agreement with them.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3151
Author(s):  
Shuo Yang ◽  
Bin Wu ◽  
Xiucheng Liu ◽  
Mingzhi Li ◽  
Heying Wang ◽  
...  

In this study, a novel piezoelectric energy harvester (PEH) based on the array composite spherical particle chain was constructed and explored in detail through simulation and experimental verification. The power test of the PEH based on array composite particle chains in the self-powered system was realized. Firstly, the model of PEH based on the composite spherical particle chain was constructed to theoretically realize the collection, transformation, and storage of impact energy, and the advantages of a composite particle chain in the field of piezoelectric energy harvesting were verified. Secondly, an experimental system was established to test the performance of the PEH, including the stability of the system under a continuous impact load, the power adjustment under different resistances, and the influence of the number of particle chains on the energy harvesting efficiency. Finally, a self-powered supply system was established with the PEH composed of three composite particle chains to realize the power supply of the microelectronic components. This paper presents a method of collecting impact energy based on particle chain structure, and lays an experimental foundation for the application of a composite particle chain in the field of piezoelectric energy harvesting.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Zhongjie Li ◽  
Chuanfu Xin ◽  
Yan Peng ◽  
Min Wang ◽  
Jun Luo ◽  
...  

A novel hybridization scheme is proposed with electromagnetic transduction to improve the power density of piezoelectric energy harvester (PEH) in this paper. Based on the basic cantilever piezoelectric energy harvester (BC-PEH) composed of a mass block, a piezoelectric patch, and a cantilever beam, we replaced the mass block by a magnet array and added a coil array to form the hybrid energy harvester. To enhance the output power of the electromagnetic energy harvester (EMEH), we utilized an alternating magnet array. Then, to compare the power density of the hybrid harvester and BC-PEH, the experiments of output power were conducted. According to the experimental results, the power densities of the hybrid harvester and BC-PEH are, respectively, 3.53 mW/cm3 and 5.14 μW/cm3 under the conditions of 18.6 Hz and 0.3 g. Therefore, the power density of the hybrid harvester is 686 times as high as that of the BC-PEH, which verified the power density improvement of PEH via a hybridization scheme with EMEH. Additionally, the hybrid harvester exhibits better performance for charging capacitors, such as charging a 2.2 mF capacitor to 8 V within 17 s. It is of great significance to further develop self-powered devices.


Author(s):  
Guangya Ding ◽  
Hongjun Luo ◽  
Jun Wang ◽  
Guohui Yuan

A novel lever piezoelectric energy harvester (LPEH) was designed for installation in an actual roadway for energy harvesting. The model incorporates a lever module that amplifies the applied traffic load and transmits it to the piezoelectric ceramic. To observe the piezoelectric growth benefits of the optimized LPEH structure, the output characteristics and durability of two energy harvesters, the LPEH and a piezoelectric energy harvester (PEH) without a lever, were measured and compared by carrying out piezoelectric performance tests and traffic model experiments. Under the same loading condition, the open circuit voltages of the LPEH and PEH were 20.6 and 11.7 V, respectively, which represents a 76% voltage increase for the LPEH compared to the PEH. The output power of the LPEH was 21.51 mW at the optimal load, which was three times higher than that of the PEH (7.45 mW). The output power was linearly dependent on frequency and load, implying the potential application of the module as a self-powered speed sensor. When tested during 300,000 loading cycles, the LPEH still exhibited stable structural performance and durability.


2021 ◽  
Vol 228 ◽  
pp. 113720
Author(s):  
Xiaoping Wu ◽  
Lingfei Qi ◽  
Tingsheng Zhang ◽  
Zutao Zhang ◽  
Yanping Yuan ◽  
...  

2022 ◽  
Vol 184 ◽  
pp. 551-563
Author(s):  
Julien Le Scornec ◽  
Benoit Guiffard ◽  
Raynald Seveno ◽  
Vincent Le Cam ◽  
Stephane Ginestar

2018 ◽  
Vol 32 (10) ◽  
pp. 4747-4755 ◽  
Author(s):  
Yeong-min Na ◽  
Hyun-seok Lee ◽  
Jong-kyu Park

Sign in / Sign up

Export Citation Format

Share Document