Performance analysis of a lever piezoelectric energy harvester for roadway applications

Author(s):  
Guangya Ding ◽  
Hongjun Luo ◽  
Jun Wang ◽  
Guohui Yuan

A novel lever piezoelectric energy harvester (LPEH) was designed for installation in an actual roadway for energy harvesting. The model incorporates a lever module that amplifies the applied traffic load and transmits it to the piezoelectric ceramic. To observe the piezoelectric growth benefits of the optimized LPEH structure, the output characteristics and durability of two energy harvesters, the LPEH and a piezoelectric energy harvester (PEH) without a lever, were measured and compared by carrying out piezoelectric performance tests and traffic model experiments. Under the same loading condition, the open circuit voltages of the LPEH and PEH were 20.6 and 11.7 V, respectively, which represents a 76% voltage increase for the LPEH compared to the PEH. The output power of the LPEH was 21.51 mW at the optimal load, which was three times higher than that of the PEH (7.45 mW). The output power was linearly dependent on frequency and load, implying the potential application of the module as a self-powered speed sensor. When tested during 300,000 loading cycles, the LPEH still exhibited stable structural performance and durability.

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Zhongjie Li ◽  
Chuanfu Xin ◽  
Yan Peng ◽  
Min Wang ◽  
Jun Luo ◽  
...  

A novel hybridization scheme is proposed with electromagnetic transduction to improve the power density of piezoelectric energy harvester (PEH) in this paper. Based on the basic cantilever piezoelectric energy harvester (BC-PEH) composed of a mass block, a piezoelectric patch, and a cantilever beam, we replaced the mass block by a magnet array and added a coil array to form the hybrid energy harvester. To enhance the output power of the electromagnetic energy harvester (EMEH), we utilized an alternating magnet array. Then, to compare the power density of the hybrid harvester and BC-PEH, the experiments of output power were conducted. According to the experimental results, the power densities of the hybrid harvester and BC-PEH are, respectively, 3.53 mW/cm3 and 5.14 μW/cm3 under the conditions of 18.6 Hz and 0.3 g. Therefore, the power density of the hybrid harvester is 686 times as high as that of the BC-PEH, which verified the power density improvement of PEH via a hybridization scheme with EMEH. Additionally, the hybrid harvester exhibits better performance for charging capacitors, such as charging a 2.2 mF capacitor to 8 V within 17 s. It is of great significance to further develop self-powered devices.


2021 ◽  
Vol 13 (5) ◽  
pp. 2865 ◽  
Author(s):  
Sungryong Bae ◽  
Pilkee Kim

In this study, optimization of the external load resistance of a piezoelectric bistable energy harvester was performed for primary harmonic (period-1T) and subharmonic (period-3T) interwell motions. The analytical expression of the optimal load resistance was derived, based on the spectral analyses of the interwell motions, and evaluated. The analytical results are in excellent agreement with the numerical ones. A parametric study shows that the optimal load resistance depended on the forcing frequency, but not the intensity of the ambient vibration. Additionally, it was found that the optimal resistance for the period-3T interwell motion tended to be approximately three times larger than that for the period-1T interwell motion, which means that the optimal resistance was directly affected by the oscillation frequency (or oscillation period) of the motion rather than the forcing frequency. For broadband energy harvesting applications, the subharmonic interwell motion is also useful, in addition to the primary harmonic interwell motion. In designing such piezoelectric bistable energy harvesters, the frequency dependency of the optimal load resistance should be considered properly depending on ambient vibrations.


Author(s):  
Zhengbao Yang ◽  
Jean Zu

Energy harvesting from vibrations has become, in recent years, a recurring target of a quantity of research to achieve self-powered operation of low-power electronic devices. However, most of energy harvesters developed to date, regardless of different transduction mechanisms and various structures, are designed to capture vibration energy from single predetermined direction. To overcome the problem of the unidirectional sensitivity, we proposed a novel multi-directional nonlinear energy harvester using piezoelectric materials. The harvester consists of a flexural center (one PZT plate sandwiched by two bow-shaped aluminum plates) and a pair of elastic rods. Base vibration is amplified and transferred to the flexural center by the elastic rods and then converted to electrical energy via the piezoelectric effect. A prototype was fabricated and experimentally compared with traditional cantilevered piezoelectric energy harvester. Following that, a nonlinear conditioning circuit (self-powered SSHI) was analyzed and adopted to improve the performance. Experimental results shows that the proposed energy harvester has the capability of generating power constantly when the excitation direction is changed in 360. It also exhibits a wide frequency bandwidth and a high power output which is further improved by the nonlinear circuit.


2016 ◽  
Vol 2016 ◽  
pp. 1-14
Author(s):  
Guangqing Wang ◽  
Shuaishuai Gao ◽  
Xiaojun Li

A broadband piezoelectric energy harvester (BPEH), consisting of a conventional linear piezoelectric energy harvester (CPEH) and an elastic magnifier, was presented in this paper. The improved two-degree-of-freedom lumped-parameter electromechanical model of the BPEH was established and the optimal external resistances under short-circuit and open-circuit resonance conditions were investigated to maximize the output power of the BPEH. The output voltage and output power of the BPEH obtained from the theoretical model were verified and found to be in reasonable agreement with the experimental results. The obtained results have shown that the maximal output powers under short-circuit and open-circuit resonance conditions are both 24 times that generated by the CPEH without elastic magnifier. The frequency space between the two peaks of the frequency-response curve of the BPEH is 14 Hz which is 7 times that of CPEH.


2012 ◽  
Vol 1397 ◽  
Author(s):  
Seon-Bae Kim ◽  
Jung-Hyun Park ◽  
Seung-Hyun Kim ◽  
Hosang Ahn ◽  
H. Clyde Wikle ◽  
...  

ABSTRACTA transverse (d33) mode piezoelectric cantilever was fabricated for energy harvesting. Various dimensions of interdigital electrodes (IDE) were deposited on a piezoelectric layer to examine the effects of electrode design on the performance of energy harvesters. Modeling was performed to calculate the output power of the devices. The estimation was based on Roundy’s analytical modeling derived for a d31 mode piezoelectric energy harvester (PEH). In order to apply the Roundy’s model to d33 mode PEH, the IDE configuration was converted to the area of top and bottom electrodes (TBE). The power conversion in d33 mode PEH was commonly estimated by the product of piezoelectric layer’s thickness and finger electrode’s length. In addition, the spacing between fingers was regarded as gap between top and bottom electrodes. However, the output power in a transverse mode PEH increases continuously with the increase of finger spacing, which does not correspond to experimental results. In this research, the dimension of IDE was converted to that of TBE using conformal mapping, and variation of power of PEH was remodeled. The modified model suggests that the maximum power in a transverse mode PEH is obtained when the finger spacing is identical with effective finger spacing. The output power then decreases when finger spacing is larger than effective finger spacing. The decrease of efficiency may result from insufficient degree of poling and increased charged defect with increasing finger spacing.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Long Zhang ◽  
Keith A. Williams ◽  
Zhengchao Xie

The power source with the limited life span has motivated the development of the energy harvesters that can scavenge the ambient environment energy and convert it into the electrical energy. With the coupled field characteristics of structure to electricity, piezoelectric energy harvesters are under consideration as a means of converting the mechanical energy to the electrical energy, with the goal of realizing completely self-powered sensor systems. In this paper, two previous models in the literatures for predicting the open-circuit and close-circuit voltages of a piezoelectric cantilever bimorph (PCB) energy harvester are first described, that is, the mechanical equivalent spring mass-damper model and the electrical equivalent circuit model. Then, the development of an enhanced coupled field model for the PCB energy harvester based on another previous model in the literature using a conservation of energy method is presented. Further, the laboratory experiments are carried out to evaluate the enhanced coupled field model and the other two previous models in the literatures. The comparison results show that the enhanced coupled field model can better predict the open-circuit and close-circuit voltages of the PCB energy harvester with a proof mass bonded at the free end of the structure in order to increase the energy-harvesting level of the system.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3203 ◽  
Author(s):  
Zhenlong Xu ◽  
Hong Yang ◽  
Hao Zhang ◽  
Huawei Ci ◽  
Maoying Zhou ◽  
...  

The approach to improve the output power of piezoelectric energy harvester is one of the current research hotspots. In the case where some sources have two or more discrete vibration frequencies, this paper proposed three types of magnetically coupled multi-frequency hybrid energy harvesters (MHEHs) to capture vibration energy composed of two discrete frequencies. Electromechanical coupling models were established to analyze the magnetic forces, and to evaluate the power generation characteristics, which were verified by the experimental test. The optimal structure was selected through the comparison. With 2 m/s2 excitation acceleration, the optimal peak output power was 2.96 mW at 23.6 Hz and 4.76 mW at 32.8 Hz, respectively. The superiority of hybrid energy harvesting mechanism was demonstrated. The influences of initial center-to-center distances between two magnets and length of cantilever beam on output power were also studied. At last, the frequency sweep test was conducted. Both theoretical and experimental analyses indicated that the proposed MHEH produced more electric power over a larger operating bandwidth.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 973
Author(s):  
Marwa S. Salem ◽  
Shimaa Ahmed ◽  
Ahmed Shaker ◽  
Mohammad T. Alshammari ◽  
Kawther A. Al-Dhlan ◽  
...  

One of the most important challenges in the design of the piezoelectric energy harvester is its narrow bandwidth. Most of the input vibration sources are exposed to frequency variation during their operation. The piezoelectric energy harvester’s narrow bandwidth makes it difficult for the harvester to track the variations of the input vibration source frequency. Thus, the harvester’s output power and overall performance is expected to decline from the designed value. This current study aims to solve the problem of the piezoelectric energy harvester’s narrow bandwidth. The main objective is to achieve bandwidth broadening which is carried out by segmenting the piezoelectric material of the energy harvester into n segments; where n could be more than one. Three arrays with two, four, and six beams are shaped with two piezoelectric segments. The effect of changing the length of the piezoelectric material segment on the resonant frequency, output power, and bandwidth, as well as the frequency response is investigated. The proposed piezoelectric energy harvesters were implemented utilizing a finite element method (FEM) simulation in a MATLAB environment. The results show that increasing the number of array beams increases the output power and bandwidth. For the three-beam arrays, at n equals 2, 6 mW output power and a 9 Hz bandwidth were obtained. Moreover, the bandwidth of such arrays covered around 5% deviation from its resonant frequency. All structures were designed to operate as a steel wheel safety sensor which could be used in train tracks.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 626
Author(s):  
Xia Li ◽  
Cheng Bi ◽  
Zhiyuan Li ◽  
Benxue Liu ◽  
Tingting Wang ◽  
...  

To meet the needs of low-power microelectronic devices for on-site self-supply energy, a galloping piezoelectric–electromagnetic energy harvester (GPEEH) is proposed. It consists of a galloping piezoelectric energy harvester (GPEH) and an electromagnetic energy harvester (EEH), which is installed inside the bluff body of the GPEH. The vibration at the end of the GPEH cantilever drives the magnet to vibrate, so that electromagnetic energy can be captured by cutting off the induced magnetic field lines. The coupling structure is a two-degree-of-freedom motion, which improves the output power of the energy harvester. Based on Hamilton’s variational principle and quasi-static hypothesis, the piezoelectric–electromagnetic vibrated coupling equation is established, and the output characteristics of GPEEH are obtained by the method of numerical simulation. Using the method of numerical simulation, studies a series of parameters on the output performance. when the wind speed is 9 m/s, the effective output power of the GPEEH is compared with the classical galloping piezoelectric energy harvester (CGPEH) who is no magnet. It is found that the output power of GPEEH 121% higher than the output power of CGPEH. Finally, set up an experimental platform, and test and verify. The experimental analysis results show that the simulated output parameter curves are basically consistent with the experimental drawing curves. In addition, when the wind speed is 9 m/s, under the same parameters, the effective output power of the GPEEH is 112.5% higher than that of the CGPEH. The correctness of the model is verified.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hygin Davidson Mayekol Mayck ◽  
Ahmed Mohamed Rashad Fath El-Bab ◽  
Evan Murimi ◽  
Pierre Moukala Mpele

Abstract In the last decade, piezoelectric energy harvesters have received a significant attention from the scientific community. This comes along with the need of developing self-powered devices such as medical implant to reduce the cost and risk of surgery. This paper investigates a two degree of freedom (2-DOF) piezoelectric energy harvester device to be integrated into a pacemaker. The 2-DOF is designed as a cut-out beam with a secondary beam cut into a primary one. The system is developed to operate in the frequency range of 0–2 Hz, with an acceleration of 1 g (9.8 m/s2) to match the heartbeat frequencies (1–1.67 Hz). The system uses a Lead Zirconate Titanate (PZT) and a Poly Methyl Methacrylate (PMMA) as lead beam to compensate the brittleness of PZT. COMSOL Multiphysics software is used to model and analyze the resonant frequencies of the system, and the stress in the piezoelectric beam. The proposed device has a compact volume of 26 × 11.58 × 0.41 mm, which can fit perfectly in a pacemaker whose battery volume has been reduced by 50%. The output voltage and power are determined through analytical calculus using Matlab. Typical pacemakers require 1 μW to operate. Thus, with a peak power of 30.97 μW at 1.5 Hz and an average output power of 11.05 μW observed from 0.9 to 1.7 Hz, the harvester can power a pacemaker. It is assumed that the energy harvester could extend its life time for 5–10 more years. Furthermore, the harvester operates at extremely low frequency and produces reasonable power, making it suitable for biomedical devices.


Sign in / Sign up

Export Citation Format

Share Document