scholarly journals Surface Quality Improvement of 3D Microstructures Fabricated by Micro-EDM with a Composite 3D Microelectrode

Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 868
Author(s):  
Jianguo Lei ◽  
Kai Jiang ◽  
Xiaoyu Wu ◽  
Hang Zhao ◽  
Bin Xu

Three-dimensional (3D) microelectrodes used for processing 3D microstructures in micro-electrical discharge machining (micro-EDM) can be readily prepared by laminated object manufacturing (LOM). However, the microelectrode surface always appears with steps due to the theoretical error of LOM, significantly reducing the surface quality of 3D microstructures machined by micro-EDM with the microelectrode. To address the problem above, this paper proposes a filling method to fabricate a composite 3D microelectrode and applies it in micro-EDM for processing 3D microstructures without steps. The effect of bonding temperature and Sn film thickness on the steps is investigated in detail. Meanwhile, the distribution of Cu and Sn elements in the matrix and the steps is analyzed by the energy dispersive X-ray spectrometer. Experimental results show that when the Sn layer thickness on the interface is 8 μm, 15 h after heat preservation under 950 °C, the composite 3D microelectrodes without the steps on the surface were successfully fabricated, while Sn and Cu elements were evenly distributed in the microelectrodes. Finally, the composite 3D microelectrodes were applied in micro-EDM. Furthermore, 3D microstructures without steps on the surface were obtained. This study verifies the feasibility of machining 3D microstructures without steps by micro-EDM with a composite 3D microelectrode fabricated via the proposed method.

2020 ◽  
Vol 13 (3) ◽  
pp. 219-229
Author(s):  
Baocheng Xie ◽  
Jianguo Liu ◽  
Yongqiu Chen

Background: Micro-Electrical Discharge Machining (EDM) milling is widely used in the processing of complex cavities and micro-three-dimensional structures, which is a more effective processing method for micro-precision parts. Thus, more attention has been paid on the micro-EDM milling. Objective : To meet the increasing requirement of machining quality and machining efficiency of micro- EDM milling, the processing devices and processing methods of micro-EDM milling are being improved continuously. Methods: This paper reviews various current representative patents related to the processing devices and processing methods of micro-EDM milling. Results: Through summarizing a large number of patents about processing devices and processing methods of micro-EDM milling, the main problems of current development, such as the strategy of electrode wear compensation and the development trends of processing devices and processing methods of micro-EDM milling are discussed. Conclusion: The optimization of processing devices and processing methods of micro-EDM milling are conducive to solving the problems of processing efficiency and quality. More relevant patents will be invented in the future.


2011 ◽  
Vol 264-265 ◽  
pp. 1450-1455 ◽  
Author(s):  
Gunawan Setia Prihandana ◽  
Tutik Sriani ◽  
Kei Prihandana ◽  
Yuta Prihandana ◽  
Muslim Mahardika ◽  
...  

The application of powder mixed dielectric to improve the efficiency of electrical discharge machining (EDM) has been acknowledged extensively. However, the study of micro-size powder suspension in micro-EDM field is still limited. In this research, nano and micro size powder of MoS2 were used as catalyst agent. Powder suspension in different size was able to provide significant improvement in material removal rate and surface quality to increase the efficiency in μ- EDM processes.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 335 ◽  
Author(s):  
Bin Xu ◽  
Kang Guo ◽  
Likuan Zhu ◽  
Xiaoyu Wu ◽  
Jianguo Lei

When using foil queue microelectrodes (FQ-microelectrodes) for micro electrical discharge machining (micro-EDM), the processed results of each foil microelectrode (F-microelectrode) can be stacked to construct three-dimensional (3D) microstructures. However, the surface of the 3D microstructure obtained from this process will have a step effect, which has an adverse effect on the surface quality and shape accuracy of the 3D microstructures. To focus on this problem, this paper proposes to use FQ-microelectrodes with tapered structures for micro-EDM, thereby eliminating the step effect on the 3D microstructure’s surface. By using a low-speed wire EDM machine, a copper foil with thickness of 300 μm was processed to obtain a FQ-microelectrode in which each of the F-microelectrodes has a tapered structure along its thickness direction. These tapered structures could effectively improve the construction precision of the 3D microstructure and effectively eliminate the step effect. In this paper, the effects of the taper angle and the number of microelectrodes on the step effect were investigated. The experimental results show that the step effect on the 3D microstructure’s surface became less evident with the taper angle and the number of F-microelectrodes increased. Finally, under the processing voltage of 120 V, pulse width of 1 μs and pulse interval of 10 μs, a FQ-microelectrode (including 40 F-microelectrodes) with 10° taper angle was used for micro-EDM. The obtained 3D microstructure has good surface quality and the step effect was essentially eliminated.


2013 ◽  
Vol 652-654 ◽  
pp. 1157-1162
Author(s):  
Fu Qiang Hu ◽  
Jian Fei Sun ◽  
Jun Qi Wei ◽  
Yong Zhang ◽  
Yan Dong Jia ◽  
...  

This paper researches the material erosion mechanisms of high silicon- aluminum (Si-Al) alloy in micro electrical discharge machining (Micro-EDM). By using Quanta 200F environment scanning electron microscope, the microstructure of Al-50wt%Si alloy by spray forming was observed. And a simplified model of high Si-Al alloy was set up. The Al-50wt%Si alloy was machined by using copper electrode and tungsten electrode respectively. And the differences of surface morphologies and element energy spectrum were compared. The process and the material erosion mechanisms of high Si-Al alloy in Micro-EDM were analyzed in detail. The results may provide theoretical basis for Micro-EDM of high Si-Al alloy.


2013 ◽  
Vol 549 ◽  
pp. 503-510 ◽  
Author(s):  
Gianluca D'Urso ◽  
Giancarlo Maccarini ◽  
C. Merla

The recent miniaturization trend in manufacturing, has enhanced the production of new and highly sophisticated systems in various industrial fields. In recent years, machining of the so called difficult to cut materials has become an important issue in several sectors. Micro Electrical Discharge Machining (micro-EDM) thanks to its contactless nature, is one of the most important technologies for the machining of this type of materials and it can be considered as one of the most promising manufacturing technologies for the fabrication of micro components. One of the most relevant applications of micro-EDM is micro-drilling. Micro holes in fact, are widely used for example in micro-electromechanical systems (MEMS), serving as channels or nozzles to connect two micro-features, and in micro-mechanical components. The present study is about micro drilling of metal plates by means of micro-EDM technology. In particular, the aim of this work is to investigate the effects of the downsizing of the micro holes diameter on the drilling performances. The influence of the reduction of the diameters in terms of both process performances (e.g., tool wear, taper rate, diametrical overcut) and general quality of the holes was investigated. Steel plates having thickness equal to 0.8 mm were taken into account. The drilling process was carried out using a micro-EDM machine Sarix SX 200 with carbide electrodes having diameter equal to 300, 200, 100 and 50 μm. Since the standard electrodes adopted in this study had a diameter equal to 300 μm, a wire EDM unit was used to obtain the other electrodes. The relationship between the process parameters considered the most significant and the final output, was studied. Furthermore, the geometrical and dimensional properties of the micro-holes were analyzed using both optical and scanning electron microscopes. In particular, it is demonstrated that the diameter size has a significant influence on the final value of the diametrical overcut while peak current and frequency parameters have a negligible effect.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6074
Author(s):  
Tingting Ni ◽  
Qingyu Liu ◽  
Zhiheng Chen ◽  
Dongsheng Jiang ◽  
Shufeng Sun

Micro electrical discharge machining (micro EDM) is able to remove conductive material by non-contact instantaneous high temperature, which is more suitable for machining titanium and its alloys compared with traditional machining methods. To further improve the machining efficiency and machined surface quality of micro EDM, the nano particle surfactant mixed micro EDM method is put forward in this paper. Experiments were conducted to explore the effect of nano particle surfactant on the micro EDM performance of titanium alloy. The results show that the material removal rate of micro EDM in dielectric mixed with TiO2 is the highest when open-circuit voltage is 100 V, followed by Al2O3 and ZrO2. Lower tool wear rate can be produced by using dielectric mixed with nano particle surfactant. The taper ratio of micro EDM in dielectric mixed with nano particle surfactant is higher than that in deionized water. The surface roughness Ra of micro EDM in dielectric mixed with TiO2 can be 50% lower than that in deionized water. It is helpful to improve the machining performance by adding surface surfactant in the dielectric of micro EDM.


Author(s):  
Guanxin Chi ◽  
Weiliang Zeng ◽  
Desheng Dong ◽  
Zhenlong Wang

Micro electrical discharge machining (EDM), enhanced with ultrasonic vibration, is explored and assessed as a new technology for developing microelectrode array, for microelectrode array fabricated by LIGA has shortcomings such as complex technology and high price. Based on the mechanism of micro-EDM, micro-hole array discharges to fabricate microelectrode array by reverse copying. In the process of reverse copying, the thicker rod electrode can’t rotate, resulting in electric arc and short-circuit easily, so it is necessary to add ultrasonic vibration on the plane plate electrode. According to the technology, a set of micro-EDM system is designed and developed. On the machining system, influence of ultrasonic vibration is analysed from the way of vibration mechanics through theoretical analysis and experimental observation. Compared with machining without ultrasonic vibration, single discharging energy decreases 1/2, discharge frequency improves three times, machining efficiency increases two times and better surface quality is achieved. Finally, 5×5 arrays of microelectrode and microhole made by these microelectrode arrays are got, the diameter of single electrode is less than 30μm and height-to-width aspect ratio is more than 8, moreover these arrays of microelectrode and micro-hole have very good surface quality.


2020 ◽  
Vol 191 ◽  
pp. 04004
Author(s):  
Kan Wang ◽  
Yong Liu

In micro electrical discharge machining (micro-EDM), polarity effect is attributed to the difference in energy distribution into the anode and cathode. Understanding the effect of machining polarity on energy distribution bears significance in predicting and controlling machining performances. Single discharge experiments were conducted in this study, to explore single discharge characteristics. The plasma radius and energy distribution were calculated by combining the crater size and the electro-thermal model. The results show that the influence of discharge current on crater depth-to-diameter ratio (H/D) is not significant with positive polarity. The plasma radius, fraction of energy transferred to workpiece, and crater size are greater for micro-EDM with negative polarity than positive polarity.


Sign in / Sign up

Export Citation Format

Share Document