scholarly journals Attitude and Heading Estimation for Indoor Positioning Based on the Adaptive Cubature Kalman Filter

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Jijun Geng ◽  
Linyuan Xia ◽  
Dongjin Wu

The demands for indoor positioning in location-based services (LBS) and applications grow rapidly. It is beneficial for indoor positioning to combine attitude and heading information. Accurate attitude and heading estimation based on magnetic, angular rate, and gravity (MARG) sensors of micro-electro-mechanical systems (MEMS) has received increasing attention due to its high availability and independence. This paper proposes a quaternion-based adaptive cubature Kalman filter (ACKF) algorithm to estimate the attitude and heading based on smart phone-embedded MARG sensors. In this algorithm, the fading memory weighted method and the limited memory weighted method are used to adaptively correct the statistical characteristics of the nonlinear system and reduce the estimation bias of the filter. The latest step data is used as the memory window data of the limited memory weighted method. Moreover, for restraining the divergence, the filter innovation sequence is used to rectify the noise covariance measurements and system. Besides, an adaptive factor based on prediction residual construction is used to overcome the filter model error and the influence of abnormal disturbance. In the static test, compared with the Sage-Husa cubature Kalman filter (SHCKF), cubature Kalman filter (CKF), and extended Kalman filter (EKF), the mean absolute errors (MAE) of the heading pitch and roll calculated by the proposed algorithm decreased by 4–18%, 14–29%, and 61–77% respectively. In the dynamic test, compared with the above three filters, the MAE of the heading reduced by 1–8%, 2–18%, and 2–21%, and the mean of location errors decreased by 9–22%, 19–31%, and 32–54% respectively by using the proposed algorithm for three participants. Generally, the proposed algorithm can effectively improve the accuracy of heading. Moreover, it can also improve the accuracy of attitude under quasistatic conditions.

2021 ◽  
Vol 11 (15) ◽  
pp. 6805
Author(s):  
Khaoula Mannay ◽  
Jesús Ureña ◽  
Álvaro Hernández ◽  
José M. Villadangos ◽  
Mohsen Machhout ◽  
...  

Indoor positioning systems have become a feasible solution for the current development of multiple location-based services and applications. They often consist of deploying a certain set of beacons in the environment to create a coverage volume, wherein some receivers, such as robots, drones or smart devices, can move while estimating their own position. Their final accuracy and performance mainly depend on several factors: the workspace size and its nature, the technologies involved (Wi-Fi, ultrasound, light, RF), etc. This work evaluates a 3D ultrasonic local positioning system (3D-ULPS) based on three independent ULPSs installed at specific positions to cover almost all the workspace and position mobile ultrasonic receivers in the environment. Because the proposal deals with numerous ultrasonic emitters, it is possible to determine different time differences of arrival (TDOA) between them and the receiver. In that context, the selection of a suitable fusion method to merge all this information into a final position estimate is a key aspect of the proposal. A linear Kalman filter (LKF) and an adaptive Kalman filter (AKF) are proposed in that regard for a loosely coupled approach, where the positions obtained from each ULPS are merged together. On the other hand, as a tightly coupled method, an extended Kalman filter (EKF) is also applied to merge the raw measurements from all the ULPSs into a final position estimate. Simulations and experimental tests were carried out and validated both approaches, thus providing average errors in the centimetre range for the EKF version, in contrast to errors up to the meter range from the independent (not merged) ULPSs.


Kybernetes ◽  
2010 ◽  
Vol 39 (1) ◽  
pp. 127-139 ◽  
Author(s):  
Chingiz Hajiyev ◽  
Ali Okatan

PurposeThe purpose of this paper is to design the fault detection algorithm for multidimensional dynamic systems using a new approach for checking the statistical characteristics of Kalman filter innovation sequence.Design/methodology/approachThe proposed approach is based on given statistics for the mathematical expectation of the spectral norm of the normalized innovation matrix of the Kalman filter.FindingsThe longitudinal dynamics of an aircraft as an example is considered, and detection of various sensor faults affecting the mean and variance of the innovation sequence is examined.Research limitations/implicationsA real‐time detection of sensor faults affecting the mean and variance of the innovation sequence, applied to the linearized aircraft longitudinal dynamics, is examined. The non‐linear longitudinal dynamics model of an aircraft is linearized. Faults affecting the covariances of the innovation sequence are not considered in the paper.Originality/valueThe proposed approach permits simultaneous real‐time checking of the expected value and the variance of the innovation sequence and does not need a priori information about statistical characteristics of this sequence in the failure case.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8180
Author(s):  
Jijun Geng ◽  
Linyuan Xia ◽  
Jingchao Xia ◽  
Qianxia Li ◽  
Hongyu Zhu ◽  
...  

Indoor localization based on pedestrian dead reckoning (PDR) is drawing more and more attention of researchers in location-based services (LBS). The demand for indoor localization has grown rapidly using a smartphone. This paper proposes a 3D indoor positioning method based on the micro-electro-mechanical systems (MEMS) sensors of the smartphone. A quaternion-based robust adaptive cubature Kalman filter (RACKF) algorithm is proposed to estimate the heading of pedestrians based on magnetic, angular rate, and gravity (MARG) sensors. Then, the pedestrian behavior patterns are distinguished by detecting the changes of pitch angle, total accelerometer and barometer values of the smartphone in the duration of effective step frequency. According to the geometric information of the building stairs, the step length of pedestrians and the height difference of each step can be obtained when pedestrians go up and downstairs. Combined with the differential barometric altimetry method, the optimal height can be computed by the robust adaptive Kalman filter (RAKF) algorithm. Moreover, the heading and step length of each step are optimized by the Kalman filter to reduce positioning error. In addition, based on the indoor map vector information, this paper proposes a heading calculation strategy of the 16-wind rose map to improve the pedestrian positioning accuracy and reduce the accumulation error. Pedestrian plane coordinates can be solved based on the Pedestrian Dead-Reckoning (PDR). Finally, combining pedestrian plane coordinates and height, the three-dimensional positioning coordinates of indoor pedestrians are obtained. The proposed algorithm is verified by actual measurement examples. The experimental verification was carried out in a multi-story indoor environment. The results show that the Root Mean Squared Error (RMSE) of location errors is 1.04–1.65 m by using the proposed algorithm for three participants. Furthermore, the RMSE of height estimation errors is 0.17–0.27 m for three participants, which meets the demand of personal intelligent user terminal for location service. Moreover, the height parameter enables users to perceive the floor information.


2015 ◽  
Vol 21 (10) ◽  
pp. 2993-2996
Author(s):  
Byeongju Kang ◽  
KilTo Chong ◽  
Deokjin Lee

Author(s):  
Tao-Yun Zhou ◽  
Bao-Wang Lian ◽  
Yi Zhang ◽  
Sen Liu

With rapid growth in the demand of location-based services (LBS) in indoor environments, localizations based on fingerprinting have attracted significant interest due to their convenience. Until now, most such methods were based on received signal strength indicator (RSSI), which is vulnerable to non-line-of-sight (NLOS). In order to realize high-precision indoor positioning, we propose a channel state information (CSI)-based Amp-Phi indoor-positioning system which exploits the amplitude and phase information of CSI at the same time to establish a fingerprinting database. Firstly, according to the characteristics of the raw CSI information collected at different positions under different environments, we build an NLOS mitigation model and a phase error mitigation model, respectively, to process the amplitude and phase of CSI. Secondly, we analyze the statistical characteristics of CSI carefully, including maximum, minimum, mean and variance. After being processed with the models, the CSI features can be used to distinguish different positions clearly, which provides a theoretical basis for the indoor positioning based on fingerprinting. Finally, we build a fingerprinting database based on the features of amplitude and phase, realize to locate the target’s position with the K-Nearest Neighbor (KNN) matching algorithm. Experiments implemented in different situations show that Amp-Pi system is reliable and robust, whose position accuracy is higher than that of PhaseFi, Horus and machine learning (ML) systems under the same condition. It can be used in many scenarios, such as the localization of robots in our daily life, by doctors or patients in the hospital, for people localization in large supermarkets or museums and so on.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhaoming Li ◽  
Wenge Yang ◽  
Dan Ding

To address the problem that filtering accuracy is reduced with the inaccurate time-varying noise statistic in conventional cubature Kalman filter, a noise statistic estimator based adaptive simplex cubature Kalman filter is put forward in this paper. First, the simplex cubature rule is adopted to approximate the intractable nonlinear Gaussian weighted integral in the filter. Secondly, a suboptimal unbiased constant noise statistic estimator is derived based on the maximum a posteriori estimation criterion. For the time-varying noise, the above estimator is modified using an exponential weighted attenuation method to realize the oblivion of stale data which results in a fading memory estimator, which has the ability to estimate the time-varying noise statistic to revise the filter online. The simulation results indicate that the proposed filter can achieve higher accuracy than conventional filters with inaccurate noise statistic.


Author(s):  
Manuel Bandala ◽  
Tomás Salgado ◽  
Ramón Chávez

Purpose – This paper presents the results of a heading estimation method for a remotely operated vehicle (ROV). The output rate of commercially available underwater compasses is typically in the order of a few Hz. Heading frequencies of at least 1 KHz are desirable for navigation and control purposes. Design/methodology/approach – The estimation was performed by fusioning the signals of three inertial sensors: the ROV’s own underwater compass (which operates roughly at 10 Hz or less), the ROV’s embedded gyro and an additional angular rate sensor that provides readings from 1 to 3 KHz. The output signal of the additional angular rate sensor is not part of the proposed Kalman filter. Nonetheless a five-point Newton-Cotes closed integration of such signal is fed into the Kalman filter implementation that performs the required heading estimation at 1 KHz or more. Findings – The proposed Kalman filter implementation is a suitable approach to estimate heading position even though the original compass signal rate is significantly slower than the signal required for both assisted and autonomous control. Research limitations/implications – The estimated heading yield good results in both simulation and experimental environments. Originality/value – The method was embedded in a dedicated 16-bit DSP that handles both the acquisition of the three signals and the heading estimation, hence resulting in a very low-cost solution. The embedded solution was tested in the developed submarine and the obtained high-rate heading parameter is now used by the control system of the ROV.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Lijun Song ◽  
Zhongxing Duan ◽  
Jiwu Sun

The transfer alignment (TA) scheme is used for the initial alignment of Inertial Navigation System (INS) on dynamical base. The Kalman filter is often used in TA to improve the precision of TA. And the statistical characteristics of interference signal which is difficult to get must be known before the Kalman filter is used in the TA, because the interference signal is a random signal and there are some changes on the dynamic model of system. In this paper, theH∞filter is adopted in the TA scheme of the angular rate matching when the various stages of disturbance in measurement are unknown. And it is compared with the Kalman filter in the same environment of simulation and evaluation. The result of simulation shows that theH∞filter and the Kalman filter are both effective. The Kalman filter is more accurate than theH∞filter when system noise and measurement noise are white noise, but theH∞filter is more accurate and quicker than the Kalman filter when system noise and measurement noise are color noise. In the engineering practice, system noise and measurement noise are always color noise, so theH∞filter is more suitable for engineering practice than the Kalman filter.


Sign in / Sign up

Export Citation Format

Share Document