scholarly journals Dielectrowetting Control of Capillary Force (Cheerios Effect) between Floating Objects and Wall for Dielectric Fluid

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 341
Author(s):  
Junqi Yuan ◽  
Jian Feng ◽  
Sung Kwon Cho

A capillary interaction between floating objects and adjacent walls, which is known as “Cheerios effect”, is a common phenomenon that generates capillary attraction or repulsion forces between them depending on their wettabilities, densities, geometries, and so on. This paper deals with controlling the capillary forces, specifically, acting on objects floating on a dielectric (non-conductive) fluid. A key control input parameter is the wettability (contact angle) of the sidewall adjacent to the floating object. By introducing dielectrowetting to the sidewall and actively changing the contact angle on the sidewall, the capillary force is controlled and easily reversed between attraction and repulsion. In this reversing process, the tilting angle of the sidewall is another critical parameter. A theoretical relation taking the titling angle into account is compared and in good agreement with experimental results obtained from the trajectory of the floating object. Finally, a continuous motion of the floating object is demonstrated using this control where an array of dielectrowetting electrode pads is sequentially activated.

Author(s):  
Arthur E. P. Veldman ◽  
Henk Seubers ◽  
Peter van der Plas ◽  
Joop Helder

The simulation of free-surface flow around moored or floating objects faces a series of challenges, concerning the flow modelling and the numerical solution method. One of the challenges is the simulation of objects whose dynamics is determined by a two-way interaction with the incoming waves. The ‘traditional’ way of numerically coupling the flow dynamics with the dynamics of a floating object becomes unstable (or requires severe underrelaxation) when the added mass is larger than the mass of the object. To deal with this two-way interaction, a more simultaneous type of numerical coupling is being developed. The paper will focus on this issue. To demonstrate the quasi-simultaneous method, a number of simulation results for engineering applications from the offshore industry will be presented, such as the motion of a moored TLP platform in extreme waves, and a free-fall life boat dropping into wavy water.


2007 ◽  
Vol 7 (19) ◽  
pp. 5081-5091 ◽  
Author(s):  
C. Marcolli ◽  
S. Gedamke ◽  
T. Peter ◽  
B. Zobrist

Abstract. A differential scanning calorimeter (DSC) was used to explore heterogeneous ice nucleation of emulsified aqueous suspensions of two Arizona test dust (ATD) samples with particle diameters of nominally 0–3 and 0–7 μm, respectively. Aqueous suspensions with ATD concentrations of 0.01–20 wt% have been investigated. The DSC thermograms exhibit a homogeneous and a heterogeneous freezing peak whose intensity ratios vary with the ATD concentration in the aqueous suspensions. Homogeneous freezing temperatures are in good agreement with recent measurements by other techniques. Depending on ATD concentration, heterogeneous ice nucleation occurred at temperatures as high as 256 K or down to the onset of homogeneous ice nucleation (237 K). For ATD-induced ice formation Classical Nucleation Theory (CNT) offers a suitable framework to parameterize nucleation rates as a function of temperature, experimentally determined ATD size, and emulsion droplet volume distributions. The latter two quantities serve to estimate the total heterogeneous surface area present in a droplet, whereas the suitability of an individual heterogeneous site to trigger nucleation is described by the compatibility function (or contact angle) in CNT. The intensity ratio of homogeneous to heterogeneous freezing peaks is in good agreement with the assumption that the ATD particles are randomly distributed amongst the emulsion droplets. The observed dependence of the heterogeneous freezing temperatures on ATD concentrations cannot be described by assuming a constant contact angle for all ATD particles, but requires the ice nucleation efficiency of ATD particles to be (log)normally distributed amongst the particles. Best quantitative agreement is reached when explicitly assuming that high-compatibility sites are rare and that therefore larger particles have on average more and better active sites than smaller ones. This analysis suggests that a particle has to have a diameter of at least 0.1 μm to exhibit on average one active site.


Author(s):  
Yen-Wen Lu ◽  
Rakesh Dhull

A simple method that utilizes Marangoni flow to create droplet deformation and to tilt micro-objects is presented. Contact angle hysteresis is employed to prevent the droplet from rolling away from the position. The device consists of a micromirror placed on the droplet, and can produce a 6.5° tilting angle when actuated at 30 V. It also demonstrates its scanning capability and potential as a micromirror.


2015 ◽  
Vol 51 (1) ◽  
pp. 33-40 ◽  
Author(s):  
X.B. Huang ◽  
X X.W. ◽  
J.J. Song ◽  
C.G. Bai ◽  
R.D. Zhang ◽  
...  

The relative contact angle (?RCA) for seven iron ore fines was measured by using Washburn Osmotic Pressure method under laboratory conditions. By choosing cyclohexane as the reference that can perfectly wet iron ore particles, the relative contact angles were measured and varied from 57? to 73?. With the volume % of goethite (?G) as the variable, a new model for relative contact angle was developed. The expected relative contact angle for pure goethite is about 56?, while that for goethite free samples is about 77?. Physical properties, such as surface morphology (SMI) and pore volume (Vpore) can influence the relative contact angle. The ?G can be expressed as a function of SMI and VPore. Thus, we inferred that the relative contact angle is a function of ?G for the iron ores used. The measured relative contact angles were found to be in good agreement (Radj 2 >0.97) with the calculated ones based on the research from Iveson, et al. (2004). Comparing with the model developed by Iveson et al.(2004), the new model for contact angle proposed in this paper is similar, but more detailed with two meaningful physical parameters. The modification of physicochemical properties on iron ores would be another topic in the further study on granulation.


2019 ◽  
Vol 622 ◽  
pp. A169 ◽  
Author(s):  
E. Merlin ◽  
S. Pilo ◽  
A. Fontana ◽  
M. Castellano ◽  
D. Paris ◽  
...  

Aims. We present A-PHOT, a new publicly available code for performing aperture photometry on astronomical images, that is particularly well suited for multi-band extragalactic surveys. Methods.A-PHOT estimates the fluxes emitted by astronomical objects within a chosen set of circular or elliptical apertures. Unlike other widely used codes, it runs on predefined lists of detected sources, allowing for repeated measurements on the same list of objects on different images. This can be very useful when forced photometric measurement on a given position is needed. A-PHOT can also estimate morphological parameters and a local background flux, and compute on-the-fly individual optimized elliptical apertures, in which the signal-to-noise ratio is maximized. Results. We check the performance of A-PHOT on both synthetic and real test datasets: we explore a simulated case of a space-based high-resolution imaging dataset, investigating the input parameter space to optimize the accuracy of the performance, and we exploit the CANDELS GOODS-South data to compare the A-PHOT measurements with those from the survey legacy catalogs, finding good agreement overall. Conclusions.A-PHOT proves to a useful and versatile tool for quickly extracting robust and accurate photometric measurements and basic morphological information of galaxies and stars, with the advantage of allowing for various measurements of fluxes at any chosen position without the need of a full detection run, and for determining the basic morphological features of the sources.


2018 ◽  
Vol 5 (7) ◽  
pp. 171936 ◽  
Author(s):  
Wenjun Gu ◽  
Peng Cheng ◽  
Mingjin Tang

Organic halogens are of great environmental and climatic concern. In this work, we have compiled their gas phase diffusivities (pressure-normalized diffusion coefficients) in a variety of bath gases experimentally measured by previous studies. It is found that diffusivities estimated using Fuller's semi-empirical method agree very well with measured values for organic halogens. In addition, we find that at a given temperature and pressure, different molecules exhibit very similar mean free paths in the same bath gas, and then propose a method to estimate mean free paths in different bath gases. For example, the pressure-normalized mean free paths are estimated to be 90, 350, 90, 80, 120 nm atm in air (and N 2 /O 2 ), He, argon, CO 2 and CH 4 , respectively, with estimated errors of around ±25%. A generic method, which requires less input parameter than Fuller's method, is proposed to calculate gas phase diffusivities. We find that gas phase diffusivities in He (and air as well) calculated using our method show fairly good agreement with those measured experimentally and estimated using Fuller's method. Our method is particularly useful for the estimation of gas phase diffusivities when the trace gas contains atoms whose diffusion volumes are not known.


Author(s):  
Sheng Chau Chen ◽  
Jen Fin Lin

In the present study, the meniscus profiles of water bridges formed at different relative humidity are determined using the geometric relationships including the Kelvin equation and the force equilibrium formula established for the meniscus. The pull-off forces predicted by the present model show good agreement with the experimental results reported in the literatures. When the contact angles at two solid bodies are equal, the pull-off force is slightly elevated by an increase of the relative humidity of air, and is significantly elevated by an increase of the asperity radius. Furthermore, two hydrophobic surfaces with equally large contact angles lower the pull-off force. If a difference exists between the contact angles of two solid surfaces, the asperity with a hydrophilic surface incorporating with a smooth flat plate with a hydrophobic surface reduces the pull-off force.


2015 ◽  
Vol 113 (1) ◽  
pp. 156-171 ◽  
Author(s):  
Kwee-Yum Lee ◽  
Nicholas O'Dwyer ◽  
Mark Halaki ◽  
Richard Smith

We investigated the acquisition of skill in balancing a stick (52 cm, 34 g) on the fingertip in nine participants using three-dimensional motion analysis. After 3.5 h of practice over 6 wk, the participants could more consistently balance the stick for longer durations with greatly reduced magnitude and speed of stick and finger movements. Irrespective of level of skill, the balanced stick behaved like a normal noninverted pendulum oscillating under greater-than-gravity torque with simple harmonic motion about a virtual pivot located at the radius of gyration above the center of mass. The control input parameter was the magnitude ratio between the torque applied on the stick by the participant and the torque due to gravity. The participants utilized only a narrow range of this parameter, which did not change with practice, to rotate the stick like a linear mass-spring system. With increased skill, the stick therefore maintained the same period of oscillation but showed marked reductions in magnitude of both oscillation and horizontal translation. Better balancing was associated with 1) more accurate visual localization of the stick and proprioceptive localization of the finger and 2) reduced cross-coupling errors between finger and stick movements in orthogonal directions; i.e., finger movements in the anteroposterior plane became less coupled with stick tip movements in the mediolateral plane, and vice versa. Development of this fine motor skill therefore depended on perceptual and motor learning to provide improved estimation of sensorimotor state and precision of motor commands to an unchanging internal model of the rotational dynamics.


Author(s):  
Victor Golikov ◽  
Oleg Samovarov ◽  
Daria Chernomorets ◽  
Marco Rodriguez-Blanco

The video images captured at long range usually have low contrast floating objects of interest on a sea surface. A comparative experimental study of the statistical characteristics of reflections from floating objects and from the agitated sea surface showed the difference in the correlation and spectral characteristics of these reflections. The functioning of the recently proposed modified matched subspace detector (MMSD) is based on the separation of the observed data spectrum on two subspaces: relatively low and relatively high frequencies. In the literature the MMSD performance has been evaluated in generally and moreover using only a sea model (additive Gaussian background clutter). This paper extends the performance evaluating methodology for low contrast object detection and moreover using only the real sea dataset. This methodology assumes an object of low contrast if the mean and variance of the object and the surrounding background are the same. The paper assumes that the energy spectrum of the object and the sea are different. The paper investigates a scenario in which an artificially created model of a floating object with specified statistical parameters is placed on the surface of a real sea image. The paper compares the efficiency of the classical Matched Subspace Detector (MSD) and MMSD for detecting low-contrast objects on the sea surface. The article analyzes the dependence of the detection probability at a fixed false alarm probability on the difference between the statistical means and variances of a floating object and the surrounding sea.


Sign in / Sign up

Export Citation Format

Share Document