scholarly journals Fabrication and Characterization of Inverted Silicon Pyramidal Arrays with Randomly Distributed Nanoholes

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 931
Author(s):  
Yue Zhao ◽  
Kaiping Zhang ◽  
Hailiang Li ◽  
Changqing Xie

We report the fabrication, electromagnetic simulation and measurement of inverted silicon pyramidal arrays with randomly distributed nanoholes that act as an anti-reflectivity coating. The fabrication route combines the advantages of anisotropic wet etching and metal-assisted chemical etching. The former is employed to form inverted silicon pyramid arrays, while the latter is used to generate randomly distributed nanoholes on the surface and sidewalls of the generated inverted silicon pyramidal arrays. We demonstrate, numerically and experimentally, that such a structure facilitates the multiple reflection and absorption of photons. The resulting nanostructure can achieve the lowest reflectance of 0.45% at 700 nm and the highest reflectance of 5.86% at 2402 nm. The average reflectance in the UV region (250–400 nm), visible region (400–760 nm) and NIR region (760–2600 nm) are 1.11, 0.63 and 3.76%, respectively. The reflectance at broadband wavelength (250–2600 nm) is 14.4 and 3.4 times lower than silicon wafer and silicon pyramids. In particular, such a structure exhibits high hydrophobicity with a contact angle up to 132.4°. Our method is compatible with well-established silicon planar processes and is promising for practical applications of anti-reflectivity coating.

2016 ◽  
Vol 10 (6) ◽  
pp. 971-976 ◽  
Author(s):  
Nobuyuki Moronuki ◽  
◽  
Nguyen Phan ◽  
Norito Keyaki ◽  
◽  
...  

Metal-assisted chemical etching (MACE) is a site-selective etching process produced by a catalyst reaction at the interface between noble metal and silicon. This paper aims to make clear the applicability of sphere lithography and MACE to the fabrication of high aspect ratio Si nanostructures. The capacity to control the etched profiles and the scale extension are investigated. First, silica particles (e.g. φ1 μm) were self-assembled on a Si substrate. After the reduction of particle size via argon ion bombardment, a gold layer was deposited using the particles as a mask. The substrate was then etched with a mixture of hydrofluoric acid and hydrogen peroxide. It was found that an array of nanopillars with a regular pitch, good separation, and an aspect ratio of about 52 was produced. The effects of MACE conditions on final profiles were clarified. A limitation of this approach is the small (several millimeters) area fabricated due to the dependence on the vacuum technique (ion bombardment, Au deposition), and the size of the area limits its practical applications. Thus, Ag nanoparticles (e.g. φ150 nm) were applied. The relationship between the concentration of the Ag suspension, the Ag assembled layer, and the morphology of MACE structures was made clear. A spray method was applied to extend the deposited area of Ag particles up to φ100 mm. Finally, the effects of the cross-sectional profile on the contact angle of a water droplet were examined. By applying a high aspect ratio nanostructure on the substrate, the water contact angle increased up to 153 degrees while that without the structure is 58 degrees.


2019 ◽  
Vol 806 ◽  
pp. 24-29 ◽  
Author(s):  
Olga V. Volovlikova ◽  
S.A. Gavrilov ◽  
P.I. Lazarenko ◽  
A.V. Kukin ◽  
A.A. Dudin ◽  
...  

This paper examines the influence of etching regimes on the reflectance of black silicon formed by Ni-assisted chemical etching. Black silicon exhibits properties of high light absorptance. The measured minimum values of the reflectance (R-min) of black silicon with thickness of 580 nm formed by metal-assisted chemical etching (MACE) for 60 minutes at 460 lx illumination were 2,3% in the UV region (200–400 nm), 0,5% in the visible region (400–750 nm) and 0,3% in the IR region (750–1300 nm). The findings showed that the reflectance of black silicon depends on its thickness, illumination and treatment duration. In addition, the porosity and refractive index were calculated.


2012 ◽  
Vol 16 ◽  
pp. 15-20 ◽  
Author(s):  
Omid Tayefeh Ghalehbeygi ◽  
Vural Kara ◽  
Levent Trabzon ◽  
Selcuk Akturk ◽  
Huseyin Kizil

We fabricated Si Nano-columns by a femtosecond laser with various wavelengths and process parameters, whilst the specimen was submerged in water. The experiments were carried out by three types of wavelengths i.e. 1030 nm, 515nm, 343nm, with 500 fs laser pulses. The scales of these spikes are much smaller than micro spikes that are constructed by laser irradiation of silicon surface in vacuum or gases like SF6, Cl2. The Si nano-columns of 300 nm or less in width were characterized by SEM measurements. The formation of these Si Nano-columns that were revealed by SEM observation, indicates chemical etching with laser ablation occurred when surface exposed by laser beam. We observed 200 nm spikes height at the center of laser beam profile and the ones uniform in height at lateral incident area.


2011 ◽  
Vol 1315 ◽  
Author(s):  
Shou-Yi Kuo ◽  
Fang-I Lai ◽  
Chun-Chieh Wang ◽  
Woei-Tyng Lin

ABSTRACTIn this paper, we report the characterization of vertically aligned ZnO nanowire (NW) arrays synthesized by metal-catalyzed chemical vapor deposition. The growth mechanism of ZnO NWs may be related to vapor-solid-nucleation. Morphological, structural, optical and field emission characteristics can be modified by varying the growth time. For growth time reaches 120 min, the length and the diameter of ZnO NWs are 1.5 μm and 350 nm, and they also show preferential growth orientation along the c-axis. Moreover, strong alignment and uniform distribution of ZnO NWs can effectively enhance the antireflection to reach the average reflectance of 5.7% in the visible region as well. Field emission measurement indicated that the growth time play an important role in density- and morphology-controlled ZnO NWs, and thus ZnO NWs are expected to be used in versatile optoelectronic devices.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 378 ◽  
Author(s):  
Hailiang Li ◽  
Changqing Xie

We report a robust, sidewall transfer metal assistant chemical etching scheme for fabricating Al2O3 nanotube arrays with an ultra-high aspect ratio. Electron beam lithography followed by low-temperature Au metal assisted chemical etching (MacEtch) is used to pattern high resolution, high aspect ratio, and vertical silicon nanostructures, used as a template. This template is subsequently transferred by an atomic layer deposition of the Al2O3 layer, followed by an annealing process, anisotropic dry etching of the Al2O3 layer, and a sacrificial silicon template. The process and characterization of the Al2O3 nanotube arrays are discussed in detail. Vertical Al2O3 nanotube arrays with line widths as small as 50 nm, heights of up to 21 μm, and aspect ratios up to 420:1 are fabricated on top of a silicon substrate. More importantly, such a sidewall transfer MacEtch approach is compatible with well-established silicon planar processes, and has the benefits of having a fully controllable linewidth and height, high reproducibility, and flexible design, making it attractive for a broad range of practical applications.


2020 ◽  
Vol 32 (2) ◽  
pp. 289-296
Author(s):  
Hideyuki Mitsui ◽  
Hiroshi Kashiwazaki ◽  
Takashi Mineta ◽  
◽  

This paper describes the fabrication and characterization of a prototype wettability switching soft skin device that dynamically switches its surface morphology between flat and rough states. The device, which consists of a 1-μm-thick polydimethylsiloxane (PDMS) deformable diaphragm on a PDMS substrate with a micro-bump arrays, was successfully formed with a high fabrication yield by a novel method of device releasing from a dummy substrate. In buffered hydrofluoric acid (BHF) solution, a sacrificial layer of a novolak-resin-based resist was able to be rapidly released from the OH-terminated SiO2 surface of the dummy substrate, probably due to the breaking of hydrogen bonds at the interface. The wettability of the fabricated device was reversibly switched using micro-diaphragm deformation by varying the inner pressure. When a droplet was placed on the surface in the rough state, a large contact angle of approximately 140° was obtained, close to the Cassie mode with air in the concave-deformed PDMS micro-diaphragms, which indicated a high surface hydrophobicity. During cyclic switching between the rough and flat states after second switching, the contact angle reversibly changed between 106° and 120°, in good agreement with the Wenzel mode, where the micro-diaphragm surfaces were fully wet. Additionally, we observed that the droplet did not move even on the tilted device.


Sign in / Sign up

Export Citation Format

Share Document