scholarly journals A Novel and Cost-Effective Drive Circuit for Supplying a Piezoelectric Ceramic Actuator with Power-Factor-Correction and Soft-Switching Features

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1229
Author(s):  
Chun-An Cheng ◽  
Hung-Liang Cheng ◽  
Chien-Hsuan Chang ◽  
En-Chih Chang ◽  
Chih-Yang Tsai ◽  
...  

This paper proposes a novel and cost-effective drive circuit for supplying a piezoelectric ceramic actuator, which combines a dual boost AC-DC converter with a coupled inductor and a half-bridge resonant DC-AC inverter into a single-stage architecture with power-factor-correction (PFC) and soft-switching characteristics. The coupled inductor of the dual boost AC-DC converter sub-circuit is designed to work in discontinuous conduction mode (DCM), so the PFC function can be realized in the proposed drive circuit. The resonant tank of the half-bridge resonant inverter sub-circuit is designed as an inductive load, so that the two power switches in the presented drive circuit can achieve zero-voltage switching (ZVS) characteristics. A 50W-rated prototype drive circuit providing a piezoelectric ceramic actuator has been successfully implemented in this paper. From the experimental results at 110V input utility-line voltage, the drive circuit has the characteristics of high power factor and low input current total-harmonic-distortion factor, and two power switches have ZVS characteristics. Therefore, satisfactory outcomes from measured results prove the function of the proposed drive circuit.


2021 ◽  
Author(s):  
Chun-An Cheng ◽  
Hung-Liang Cheng ◽  
En-Chih Chang ◽  
Chien-Hsuan Chang ◽  
Chih-Yang Tsai ◽  
...  


Author(s):  
Kartikesh Kumar Jha ◽  
Bidyut Mahato ◽  
Prem Prakash ◽  
Kartick Chandra Jana

Rapid increase of consumers in electronics devices and the use of mains rectification circuits inside these electronic devices is the root cause of mains harmonic distortion. Automatic power factor correction techniques can be applied to the industries, power systems and households to make them stable inturns increases the efficiency of system as well as the apparatus. This paper deals with the hardware design of active power factor correction circuit employing boost converter which is used to boost the DC voltages with a controller based on PID control strategy. The pulses given to power switches by pulse width modulation techniques generated by utilizing micro-controller board, Arduino thus obviating the need of complex hardware circuitry. MATLAB/SIMULINK was used to design and tune the PID controller parameters. The simulation results are matching with the predictions and the same was implemented as hardware. The waveforms various test points and across capacitors were obtained, studied and compared with the theoretical waveforms and are found to be in precise proximity of theoretical waveforms.



Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1340
Author(s):  
Yih-Her Yan ◽  
Hung-Liang Cheng ◽  
Chun-An Cheng ◽  
Yong-Nong Chang ◽  
Zong-Xun Wu

A novel single-switch single-stage high power factor LED driver is proposed by integrating a flyback converter, a buck–boost converter and a current balance circuit. Only an active switch and a corresponding control circuit are used. The LED power can be adjusted by the control scheme of pulse–width modulation (PWM). The flyback converter performs the function of power factor correction (PFC), which is operated at discontinuous-current mode (DCM) to achieve unity power factor and low total current harmonic distortion (THDi). The buck–boost converter regulates the dc-link voltage to obtain smooth dc voltage for the LED. The current–balance circuit applies the principle of ampere-second balance of capacitors to obtain equal current in each LED string. The steady-state analyses for different operation modes is provided, and the mathematical equations for designing component parameters are conducted. Finally, a 90-W prototype circuit with three LED strings was built and tested. Experimental results show that the current in each LED string is indeed consistent. High power factor and low THDi can be achieved. LED power is regulated from 100% to 25% rated power. Satisfactory performance has proved the feasibility of this circuit.



2017 ◽  
Vol 32 (10) ◽  
pp. 7716-7726 ◽  
Author(s):  
Muntasir Alam ◽  
Wilson Eberle ◽  
Deepak S. Gautam ◽  
Chris Botting


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rohollah Abdollahi

Purpose The purpose of this paper is to provide a T autotransformer based 12-pulse rectifier with passive harmonic reduction in more electric aircraft applications. The T autotransformer uses only two main windings which result in volume, space, size, weight and cost savings. Also, the proposed unconventional inter-phase transformer (UIPT) with a lower kVA rating (about 2.6% of the load power) compared to the conventional inter-phase transformer results in a more harmonic reduction. Design/methodology/approach To increase rating and reduce the cost and complexity of a multi-pulse rectifier, it is well known that the pulse number must be increased. In some practical cases, a 12-pulse rectifier (12PR) is suggested as a good solution considering its simple structure and low weight. But the 12PR cannot technically meet the standards of harmonic distortion requirements for some industrial applications, and therefore, they must be used with output filters. In this paper, a 12PR is suggested, which consists of a T autotransformer 12PR and a passive harmonic reduction (PHR) based on the UIPT at direct current (DC) link. Findings To show the advantage of this new combination over other solutions, simulation results are used, and then, a prototype is implemented to evaluate and verify the simulation results. The simulation and experimental test results show that the input current total harmonic distortion (THD) of the suggested 12PR with a PHR based on UIPT is less than 5%, which meets the IEEE 519 requirements. Also, it is shown that in comparison with other solutions, it is cost effective, and at the same time, its power factor is near unity, and its rating is 29.92% of the load rating. Therefore, it is obvious that the proposed rectifier is a practical solution for more electric aircrafts. Originality/value The contributions of this paper are summarized as follows. The suggested design uses a retrofit T autotransformer, which meets all technical constraints, and in comparison, with other options, has less rating, weight, volume and cost. In the suggested rectifier, a PHR based on UIPT at its dc link of 12PR is used, which has good technical capabilities and lower ratings. In the PHR based on UIPT, an IPT is used, which has an additional secondary winding and four diodes. This solution leads to a reduction in input current THD and conduction losses of diodes. In full load conditions, the input line current THD and power factor are 4% and 0.99, respectively. The THD is less than 5%, which satisfies IEEE-519 and DO-160G requirements.







Author(s):  
R. A. Rani ◽  
Shakir Saat ◽  
Yusmarnita Yusop ◽  
Huzaimah Husin ◽  
F. K. Abdul Rahman ◽  
...  

This paper presents the effect of total harmonic distortion (THD) in power factor correction (PFC) at non-linear load. This study focuses on the relationship between THD and PFC. This is beacuse,the power factor affects THD. This occurs in power system as we have variety of loads, i. e linear load or non-linear load. The variety of loads will influence the sinusoidal waveform, which comes out from harmonic distortion. Thus, based on this study, we can compare the effective method in improving the power factor as it will not disturb the performance of THD. The focus of study is on the single phase load, where the voltage restriction is 240 V.  The analysis will  only focus on the consumer, which depends on the variety of non-linear load. Besides, the parameters for analysis are based on the percentage of THD and the value of power factor. The instrument for measuring the parameter is based on power factor correction device or technique. On the other hand, the method that was used for this study is based on simulation which incorporated the Multisim software. At the end of ths study, we can choose the most effective method that can be used to improve the power factor correction without disturbing the THD.



Sign in / Sign up

Export Citation Format

Share Document