scholarly journals Efficient Decellularization by Application of Moderate High Hydrostatic Pressure with Supercooling Pretreatment

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1486
Author(s):  
Daiki Zemmyo ◽  
Masashi Yamamoto ◽  
Shogo Miyata

Decellularized tissues are considered superior scaffolds for cell cultures, preserving the microstructure of native tissues and delivering many kinds of cytokines. High hydrostatic pressure (HHP) treatment could remove cells physically from biological tissues rather than chemical methods. However, there are some risks of inducing destruction or denaturation of extracellular matrices (ECMs) at an ultrahigh level of HHP. Therefore, efficient decellularization using moderate HHP is required to remove almost all cells simultaneously to suppress tissue damage. In this study, we proposed a novel decellularization method using a moderate HHP with supercooling pretreatment. To validate the decellularization method, a supercooling device was developed to incubate human dermal fibroblasts or collagen gels in a supercooled state. The cell suspension and collagen gels were subjected to 100, 150, and 200 MPa of HHP after supercooling pretreatment, respectively. After applying HHP, the viability and morphology of the cells and the collagen network structure of the gels were evaluated. The viability of cells decreased dramatically after HHP application with supercooling pretreatment, whereas the microstructures of collagen gels were preserved and cell adhesivity was retained after HHP application. In conclusion, it was revealed that supercooling pretreatment promoted the denaturation of the cell membrane to improve the efficacy of decellularization using static application of moderate HHP. Furthermore, it was demonstrated that the HHP with supercooling pretreatment did not degenerate and damage the microstructure in collagen gels.

Author(s):  
Victor K. Lai ◽  
Edward A. Sander ◽  
Spencer P. Lake ◽  
Robert T. Tranquillo ◽  
Victor H. Barocas

Extracellular matrix (ECM) proteins (e.g. collagen, elastin) play an important role in biological tissues. In addition to conferring mechanical strength to a tissue, the ECM provides a biochemical environment essential for modulation of cellular responses such as growth and migration. Collagens are the dominant protein of the ECM, with collagen type I being most abundant. Our group and others have shown that the mechanical properties of a collagen I matrix change with collagen concentration, and when formed in the presence of a secondary fibril network such as fibrin [1]. We are interested in collagen-fibrin systems because our group uses fibrin as the starting scaffold material for cardiovascular tissue engineering, which produces interpenetrating collagen-fibrin matrices during the remodeling process as the fibrin network is degraded and replaced with cell-deposited collagen [2]. Fibrin and collagen networks are also present together around the thrombus during the wound healing process. Research has shown that ECM mechanical properties are correlated with their overall network structure characteristics such as fibril diameter [3]. Currently we have a modeling framework that generates an ECM microstructural network which can be used to predict the overall properties of a bioengineered tissue [4]. This framework allows exploration of the structure-function relation, but how the structure depends on composition remains poorly understood, especially in multi-component gels. Thus, the objective of this work was to quantify the collagen network architecture in pure collagen gels of different concentrations and in collagen-fibrin co-gels.


2012 ◽  
Vol 706-709 ◽  
pp. 449-454
Author(s):  
Eugenia Blangino ◽  
Martín A. Cagnoli ◽  
Ramiro M. Irastorza ◽  
Fernando Vericat

It is of great interest in tissue engineering the role of collagen gel-based structures (scaffolds, grafts and-by cell seeded and maturation-tissue equivalents (TEs) for several purposes). It is expected the appropriate biological compatibility when the extracellular matrix (ECM) is collagen-based. Regarding the mechanical properties (MP), great efforts in tissue engineering are focused in tailoring TE properties by controlling ECM composition and organization. When cells are seeded, the collagen network is remodeled by cell-driven compaction and consolidation, produced mainly through the mechanical stimuli that can be directed selecting the geometry and the surfaces exposed to the cells. Collagen gels have different (chemical and mechanical) properties depending on their origin and preparation conditions. The MP of the collagen network are derived from the degree of cross-linking (CLD) which can be modified by different treatments. One of the techniques to evaluate MP in the network is by ultrasound (US). In this work we analyse the effect of several mechanical constraints (similar to that imposed to promote cell growth on certain sample surfaces, when seeded) on samples of gelatin with a specific geometry (thick walls cylinders) under loading conditions of pulsatile flow. We checked US parameters and estimates evolution of the network structure for different restrictions in the sample mobility. It was implemented by adapting devices specially built to measure elastic properties of biological tissues by US. The material (origin and purity) and the preparation conditions for the gelatin were selected in order to compare the results with those of literature.


Author(s):  
Steven B. Nicoll ◽  
Robert L. Mauck ◽  
Rick C. Tsay ◽  
Clark T. Hung ◽  
Gerard A. Ateshian

Mechanical stimuli are known to regulate the morphology and differentiated function of connective tissue cells. In particular, hydrostatic pressure has been reported to alter cytoskeletal organization in osteoblast-like cells (1) and chondrocytes (2), and to modulate metabolic activity in both chondrocytes (3–5) and intervertebral disc cells (6). The cellular response to continuous hydrostatic pressure is generally catabolic (3) while intermittent hydrostatic pressure at frequencies ranging from 0.25–1.0 Hz (3–5) is anabolic, giving rise to increased expression and biosynthesis of extracellular matrix (ECM) components. Previously, human dermal fibroblasts in monolayer culture were shown to respond to hydrostatic pressure by increasing heat shock protein expression levels (7). In this study, we characterize the effects of intermittent hydrostatic pressure on gene expression in human dermal fibroblasts seeded in three-dimensional polymer scaffolds.


2015 ◽  
Vol 11 (5) ◽  
pp. 1390-1402 ◽  
Author(s):  
Anja van der Smissen ◽  
Peter-Georg Hoffmeister ◽  
Nadja Friedrich ◽  
Akira Watarai ◽  
Michael C. Hacker ◽  
...  

Biomaterials ◽  
2011 ◽  
Vol 32 (34) ◽  
pp. 8938-8946 ◽  
Author(s):  
Anja van der Smissen ◽  
Vera Hintze ◽  
Dieter Scharnweber ◽  
Stephanie Moeller ◽  
Matthias Schnabelrauch ◽  
...  

1994 ◽  
Author(s):  
Rolf-Markus Szeimies ◽  
Anja K. Bosserhoff ◽  
Ruediger Hein ◽  
Armin Dylla ◽  
Wolfgang Baeumler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document