The Effect of Mechanical Constraints on Gelatin Samples under Pulsatile Flux

2012 ◽  
Vol 706-709 ◽  
pp. 449-454
Author(s):  
Eugenia Blangino ◽  
Martín A. Cagnoli ◽  
Ramiro M. Irastorza ◽  
Fernando Vericat

It is of great interest in tissue engineering the role of collagen gel-based structures (scaffolds, grafts and-by cell seeded and maturation-tissue equivalents (TEs) for several purposes). It is expected the appropriate biological compatibility when the extracellular matrix (ECM) is collagen-based. Regarding the mechanical properties (MP), great efforts in tissue engineering are focused in tailoring TE properties by controlling ECM composition and organization. When cells are seeded, the collagen network is remodeled by cell-driven compaction and consolidation, produced mainly through the mechanical stimuli that can be directed selecting the geometry and the surfaces exposed to the cells. Collagen gels have different (chemical and mechanical) properties depending on their origin and preparation conditions. The MP of the collagen network are derived from the degree of cross-linking (CLD) which can be modified by different treatments. One of the techniques to evaluate MP in the network is by ultrasound (US). In this work we analyse the effect of several mechanical constraints (similar to that imposed to promote cell growth on certain sample surfaces, when seeded) on samples of gelatin with a specific geometry (thick walls cylinders) under loading conditions of pulsatile flow. We checked US parameters and estimates evolution of the network structure for different restrictions in the sample mobility. It was implemented by adapting devices specially built to measure elastic properties of biological tissues by US. The material (origin and purity) and the preparation conditions for the gelatin were selected in order to compare the results with those of literature.

Author(s):  
Victor K. Lai ◽  
Edward A. Sander ◽  
Spencer P. Lake ◽  
Robert T. Tranquillo ◽  
Victor H. Barocas

Extracellular matrix (ECM) proteins (e.g. collagen, elastin) play an important role in biological tissues. In addition to conferring mechanical strength to a tissue, the ECM provides a biochemical environment essential for modulation of cellular responses such as growth and migration. Collagens are the dominant protein of the ECM, with collagen type I being most abundant. Our group and others have shown that the mechanical properties of a collagen I matrix change with collagen concentration, and when formed in the presence of a secondary fibril network such as fibrin [1]. We are interested in collagen-fibrin systems because our group uses fibrin as the starting scaffold material for cardiovascular tissue engineering, which produces interpenetrating collagen-fibrin matrices during the remodeling process as the fibrin network is degraded and replaced with cell-deposited collagen [2]. Fibrin and collagen networks are also present together around the thrombus during the wound healing process. Research has shown that ECM mechanical properties are correlated with their overall network structure characteristics such as fibril diameter [3]. Currently we have a modeling framework that generates an ECM microstructural network which can be used to predict the overall properties of a bioengineered tissue [4]. This framework allows exploration of the structure-function relation, but how the structure depends on composition remains poorly understood, especially in multi-component gels. Thus, the objective of this work was to quantify the collagen network architecture in pure collagen gels of different concentrations and in collagen-fibrin co-gels.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247727
Author(s):  
Shayan Shahab ◽  
Mehran Kasra ◽  
Alireza Dolatshahi-Pirouz

Natural biopolymer-based hydrogels especially agarose and collagen gels, considering their biocompatibility with cells and their capacity to mimic biological tissues, have widely been used for in-vitro experiments and tissue engineering applications in recent years; nevertheless their mechanical properties are not always optimal for these purposes. Regarding the importance of the mechanical properties of hydrogels, many mechanical characterization studies have been carried out for such biopolymers. In this work, we have focused on understanding the mechanical role of agarose and collagen concentration on the hydrogel strength and elastic behavior. In this direction, Amirkabir Magnetic Bead Rheometry (AMBR) characterization device equipped with an optimized electromagnet, was designed and constructed for the measurement of hydrogel mechanical properties. The operation of AMBR set-up is based on applying a magnetic field to actuate magnetic beads in contact with the gel surface in order to actuate the gel itself. In simple terms the magnetic beads leads give rise to mechanical shear stress on the gel surface when under magnetic influence and together with the associated bead-gel displacement it is possible to calculate the hydrogel shear modulus. Agarose and Collagen gels with respectively 0.2–0.6 wt % and 0.2–0.5 wt % percent concentrations were prepared for mechanical characterization in terms of their shear modulus. The shear modulus values for the different percent concentrations of the agarose gel were obtained in the range 250–650 Pa, indicating the shear modulus increases by increasing in the agar gel concentration. In addition to this, the values of shear modulus for the collagen gel increase as function of concentration in the range 240–520 Pa in accordance with an approximately linear relationship between collagen concentration and gel strength.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Ramiro M. Irastorza ◽  
Bernard Drouin ◽  
Eugenia Blangino ◽  
Diego Mantovani

Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1656
Author(s):  
Carla Huerta-López ◽  
Jorge Alegre-Cebollada

Biomaterials are dynamic tools with many applications: from the primitive use of bone and wood in the replacement of lost limbs and body parts, to the refined involvement of smart and responsive biomaterials in modern medicine and biomedical sciences. Hydrogels constitute a subtype of biomaterials built from water-swollen polymer networks. Their large water content and soft mechanical properties are highly similar to most biological tissues, making them ideal for tissue engineering and biomedical applications. The mechanical properties of hydrogels and their modulation have attracted a lot of attention from the field of mechanobiology. Protein-based hydrogels are becoming increasingly attractive due to their endless design options and array of functionalities, as well as their responsiveness to stimuli. Furthermore, just like the extracellular matrix, they are inherently viscoelastic in part due to mechanical unfolding/refolding transitions of folded protein domains. This review summarizes different natural and engineered protein hydrogels focusing on different strategies followed to modulate their mechanical properties. Applications of mechanically tunable protein-based hydrogels in drug delivery, tissue engineering and mechanobiology are discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Takara Tanaka ◽  
Noriko Hattori-Aramaki ◽  
Ayano Sunohara ◽  
Keisuke Okabe ◽  
Yoshiaki Sakamoto ◽  
...  

For in vitro tissue engineering of skeletal muscle, alignment and fusion of the cultured skeletal muscle cells are required. Although the successful alignment of skeletal muscle cells cultured in collagen gel has been reported using a mechanical force, other means of aligning cultured skeletal muscle cells have not been described. However, skeletal muscle cells cultured in a two-dimensional dish have been reported to align in a uniform direction when electrically stimulated. The purpose of this study is to determine if skeletal muscle cells cultured three-dimensionally in collagen gels can be aligned by an electrical load. By adding direct current to cells of the C2C12 skeletal muscle cell line cultured in collagen gel, it was possible to align C2C12 cells in a similar direction. However, the ratio of alignment was better when mechanical force was used as the means of alignment. Thus for tissue engineering of skeletal muscle cells, electrical stimulation may be useful as a supplementary method.


Author(s):  
Stavros Thomopoulos ◽  
Jeffrey W. Holmes

The development of anisotropic mechanical properties is critical for the successful function of many soft tissues. Load bearing tissues naturally develop varying degrees of anisotropy, presumably in response to their specific loading environment. For example, the scar tissue that forms after a myocardial infarction is structurally and mechanically anisotropic. To better understand the scar mechanics, we first need to develop structure-function relationships for collagen fiber networks. In order to improve the healing after myocardial infarction, a better understanding of the mechanical anisotropy is necessary. An in vitro collagen gel system can be used to control individual fiber network components and to determine the effect of each component on the mechanical properties of the gel. Previously, we demonstrated the ability to promote two different collagen gel structures, with two different levels of mechanical anisotropy [1]. The goal of the current study was to quantitatively relate the observed mechanical anisotropy to the collagen fiber structure. It was hypothesized that the anisotropy could be explained with a simple structural model, where the gel behavior is derived from the behavior of the individual fibers within the gel (i.e., the properties of the fibers, their orientation, and their level of slack).


2005 ◽  
Vol 127 (5) ◽  
pp. 742-750 ◽  
Author(s):  
Stavros Thomopoulos ◽  
Gregory M. Fomovsky ◽  
Jeffrey W. Holmes

An in vitro model system was developed to study structure-function relationships and the development of structural and mechanical anisotropy in collagenous tissues. Fibroblast-populated collagen gels were constrained either biaxially or uniaxially. Gel remodeling, biaxial mechanical properties, and collagen orientation were determined after 72h of culture. Collagen gels contracted spontaneously in the unconstrained direction, uniaxial mechanical constraints produced structural anisotropy, and this structural anisotropy was associated with mechanical anisotropy. Cardiac and tendon fibroblasts were compared to test the hypothesis that tendon fibroblasts should generate greater anisotropy in vitro. However, no differences were seen in either structure or mechanics of collagen gels populated with these two cell types, or between fibroblast populated gels and acellular gels. This study demonstrates our ability to control and measure the development of structural and mechanical anisotropy due to imposed mechanical constraints in a fibroblast-populated collagen gel model system. While imposed constraints were required for the development of anisotropy in this system, active remodeling of the gel by fibroblasts was not. This model system will provide a basis for investigating structure-function relationships in engineered constructs and for studying mechanisms underlying the development of anisotropy in collagenous tissues.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1486
Author(s):  
Daiki Zemmyo ◽  
Masashi Yamamoto ◽  
Shogo Miyata

Decellularized tissues are considered superior scaffolds for cell cultures, preserving the microstructure of native tissues and delivering many kinds of cytokines. High hydrostatic pressure (HHP) treatment could remove cells physically from biological tissues rather than chemical methods. However, there are some risks of inducing destruction or denaturation of extracellular matrices (ECMs) at an ultrahigh level of HHP. Therefore, efficient decellularization using moderate HHP is required to remove almost all cells simultaneously to suppress tissue damage. In this study, we proposed a novel decellularization method using a moderate HHP with supercooling pretreatment. To validate the decellularization method, a supercooling device was developed to incubate human dermal fibroblasts or collagen gels in a supercooled state. The cell suspension and collagen gels were subjected to 100, 150, and 200 MPa of HHP after supercooling pretreatment, respectively. After applying HHP, the viability and morphology of the cells and the collagen network structure of the gels were evaluated. The viability of cells decreased dramatically after HHP application with supercooling pretreatment, whereas the microstructures of collagen gels were preserved and cell adhesivity was retained after HHP application. In conclusion, it was revealed that supercooling pretreatment promoted the denaturation of the cell membrane to improve the efficacy of decellularization using static application of moderate HHP. Furthermore, it was demonstrated that the HHP with supercooling pretreatment did not degenerate and damage the microstructure in collagen gels.


2014 ◽  
Vol 11 (101) ◽  
pp. 20140852 ◽  
Author(s):  
Peter I. Kamel ◽  
Xin Qu ◽  
Andrew M. Geiszler ◽  
Deepak Nagrath ◽  
Romain Harmancey ◽  
...  

Despite a high incidence of calcific aortic valve disease in metabolic syndrome, there is little information about the fundamental metabolism of heart valves. Cell metabolism is a first responder to chemical and mechanical stimuli, but it is unknown how such signals employed in valve tissue engineering impact valvular interstitial cell (VIC) biology and valvular disease pathogenesis. In this study porcine aortic VICs were seeded into three-dimensional collagen gels and analysed for gel contraction, lactate production and glucose consumption in response to manipulation of metabolic substrates, including glucose, galactose, pyruvate and glutamine. Cell viability was also assessed in two-dimensional culture. We found that gel contraction was sensitive to metabolic manipulation, particularly in nutrient-depleted medium. Contraction was optimal at an intermediate glucose concentration (2 g l −1 ) with less contraction with excess (4.5 g l −1 ) or reduced glucose (1 g l −1 ). Substitution with galactose delayed contraction and decreased lactate production. In low sugar concentrations, pyruvate depletion reduced contraction. Glutamine depletion reduced cell metabolism and viability. Our results suggest that nutrient depletion and manipulation of metabolic substrates impacts the viability, metabolism and contractile behaviour of VICs. Particularly, hyperglycaemic conditions can reduce VIC interaction with and remodelling of the extracellular matrix. These results begin to link VIC metabolism and macroscopic behaviour such as cell–matrix interaction.


Development ◽  
1971 ◽  
Vol 26 (2) ◽  
pp. 157-167
Author(s):  
S. Moskalewski ◽  
M. Kamiński ◽  
A. Dukwicz

To obtain a three-dimensional network which would support cells during culture, cold collagen solution was mixed with cells and converted into a gel at 37 °C. Gelation of collagen did not influence cell viability. The development of chondrocyte cultures in collagen gels depended on the distance between the cells. Single chondrocytes were surrounded by a mucopolysaccharide ring. The collagen fibres in parts of the cultures with moderate cell density were strongly alcian-blue-positive. Chondrocytes in crowded areas of cultures formed a cartilage matrix. Collagen gel with Ehrlich ascites tumour cells and liver cells remained unchanged after cultivation. Cultures of kidney cells and some chondrocyte cultures shrivelled, owing to partial collagen digestion. The delicate primary collagen network in some cultures partially transformed to much thicker, long fibres or to distinct capsules around chondrocytes.


Sign in / Sign up

Export Citation Format

Share Document