scholarly journals Effect of Acclimatization in Elevated CO2 on Growth and Aflatoxin B1 Production by Aspergillus flavus Strains on Pistachio Nuts

2021 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Alaa Baazeem ◽  
Angel Medina ◽  
Naresh Magan

There is little knowledge of the effect of acclimatization of Aspergillus flavus strains to climate-related abiotic factors and the subsequent effects on growth and aflatoxin B1 (AFB1) production. In this study, two strains of A. flavus (AB3, AB10) were acclimatized for five generations in elevated CO2 (1000 ppm × 37 °C) on a milled pistachio-based medium. A comparison was made of the effects of non-acclimatized strains and those that were acclimatized when colonizing layers of pistachio nuts exposed to 35 or 37 °C, 400 or 1000 ppm CO2, and 0.93 or 0.98 water activity (aw), respectively. Acclimatization influenced the fitness in terms of the growth of one strain, while there was no significant effect on the other strain when colonizing pistachio nuts. AFB1, production was significantly stimulated after ten days colonization when comparing the non-acclimatized and the acclimatized AB3 strain. However, there was no significant increase when comparing these for strain AB10. This suggests that there may be inter-strain differences in the effects of acclimatization and this could have a differential influence on the mycotoxin contamination of such commodities.

Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 385
Author(s):  
Alaa Baazeem ◽  
Alicia Rodriguez ◽  
Angel Medina ◽  
Naresh Magan

Pistachio nuts are an important economic tree nut crop which is used directly or processed for many food-related activities. They can become colonized by mycotoxigenic spoilage fungi, especially Aspergillus flavus, mainly resulting in contamination with aflatoxins (AFs), especially aflatoxin B1 (AFB1). The prevailing climate in which these crops are grown changes as temperature and atmospheric CO2 levels increase, and episodes of extreme wet/dry cycles occur due to human industrial activity. The objectives of this study were to evaluate the effect of interacting Climate Change (CC)-related abiotic factors of temperature (35 vs. 37 °C), CO2 (400 vs. 1000 ppm), and water stress (0.98–0.93 water activity, aw) on (a) growth (b) aflD and aflR biosynthetic gene expression and (c) AFB1 production by two strains A. flavus (AB3, AB10) in vitro on milled pistachio-based media and when colonizing layers of shelled raw pistachio nuts. The A. flavus strains were resilient in terms of growth on pistachio-based media and the colonisation of pistachio nuts with no significant difference when exposed to the interacting three-way climate-related abiotic factors. However, in vitro studies showed that AFB1 production was significantly stimulated (p < 0.05), especially when exposed to 1000 ppm CO2 at 0.98–0.95 aw and 35 °C, and sometimes in the 37 °C treatment group at 0.98 aw. The relative expression of the structural aflD gene involved in AFB1 biosynthesis was decreased or only slightly increased, relative to the control conditions at elevated CO, regardless of the aw level examined. For the regulatory aflR gene expression, there was a significant (p < 0.05) increase in 1000 ppm CO2 and 37 °C for both strains, especially at 0.95 aw. The in situ colonization of pistachio nuts resulted in a significant (p < 0.05) stimulation of AFB1 production at 35 °C and 1000 ppm CO2 for both strains, especially at 0.98 aw. At 37 °C, AFB1 production was either decreased, in strain AB3, or remained similar, as in strain AB10, when exposed to 1000 ppm CO2. This suggests that CC factors may have a differential effect, depending on the interacting conditions of temperature, exposure to CO2 and the level of water stress on AFB1 production.


1977 ◽  
Vol 40 (11) ◽  
pp. 778-781 ◽  
Author(s):  
M. D. NORTHOLT ◽  
H. P. van EGMOND ◽  
W. E. PAULSCH

The optimum and limiting conditions of water activity (aw) and temperature for growth of and aflatoxin B1 production by various Aspergillus flavus strains were determined. Agar media were used in which the aw was adjusted by addition of sucrose or glycerine. Optimum temperatures for aflatoxin B1 production at high aw varied with the strain tested being 13–16, 16–24, or 31 C. Strains with a low temperature optimum for aflatoxin B1 production showed fast growth at 37 C without aflatoxin B1 production. A reduced aw (0.95 and less) together with a moderate or low temperature inhibited toxin production more than growth. However, at a high temperature one strain showed stimulation of aflatoxin B1 production on the glycerine medium at reduced aw No differences were noted between aflatoxinpositive and aflatoxin-negative strains with respect to growth under various conditions.


2014 ◽  
Vol 38 ◽  
pp. 276-283 ◽  
Author(s):  
Andrea Astoreca ◽  
Graciela Vaamonde ◽  
Ana Dalcero ◽  
Sonia Marin ◽  
Antonio Ramos

Author(s):  
Esther Garcia-Cela ◽  
Carol Verheecke-Vaessen ◽  
Maria Gutierrez-Pozo ◽  
Elisavet Kiaitsi ◽  
Alessandra M. Gasperini ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 198
Author(s):  
Rahim Khan ◽  
Farinazleen Mohamad Ghazali ◽  
Nor Ainy Mahyudin ◽  
Nik Iskandar Putra Samsudin

The pre-harvest biocontrol approach currently used includes laboratory inoculations using non-aflatoxigenic strains of Aspergillus flavus. This strategy effectively suppresses the indigenous aflatoxigenic strains and reduces aflatoxin accumulation in sweetcorn. The current in vitro study’s main objective is to determine the diametric growth rates of both Aflatoxin (AF)+ and AF− strains and improve the understanding of competitive relationships among these strains in sweetcorn (Zea mays). Sweetcorn kernels inoculated with AF+ strains only, AF− strains only, and co-inoculated with AF+ + AF− strains were investigated for aflatoxin concentrations. The diametric growth results revealed that growth rates of AF− strains at 25 and 30 °C were much greater than AF+ strains, which was in line with previous studies. The in vitro findings showed that the AKR5− and AKL34− biocontrol strains effectively inhibited the colony propagation and subsequent AFB1 contamination (up to 79%) of AF+ strains. On the other hand, the AKR1− and AKL35− were least effective in reducing AFB1 contents only by 58% and 60%, respectively. There was a significant difference (p < 0.05) in the reduction of AFB1 contents achieved by AF− strains of A. flavus. The findings of the present study indicated the reduction in AFB1 with population expressions of AF+ strains by the AF− strains and supports the notion of competitive exclusion through vigorous development and propagation of the non-aflatoxigenic fungi.


Sign in / Sign up

Export Citation Format

Share Document