scholarly journals Mobilome and Resistome Reconstruction from Genomes Belonging to Members of the Bifidobacterium Genus

2019 ◽  
Vol 7 (12) ◽  
pp. 638 ◽  
Author(s):  
Walter Mancino ◽  
Gabriele Andrea Lugli ◽  
Douwe van Sinderen ◽  
Marco Ventura ◽  
Francesca Turroni

Specific members of the genus Bifidobacterium are among the first colonizers of the human/animal gut, where they act as important intestinal commensals associated with host health. As part of the gut microbiota, bifidobacteria may be exposed to antibiotics, used in particular for intrapartum prophylaxis, especially to prevent Streptococcus infections, or in the very early stages of life after the birth. In the current study, we reconstructed the in silico resistome of the Bifidobacterium genus, analyzing a database composed of 625 bifidobacterial genomes, including partial assembled strains with less than 100 genomic sequences. Furthermore, we screened bifidobacterial genomes for mobile genetic elements, such as transposases and prophage-like elements, in order to investigate the correlation between the bifido-mobilome and the bifido-resistome, also identifying genetic insertion hotspots that appear to be prone to horizontal gene transfer (HGT) events. These insertion hotspots were shown to be widely distributed among analyzed bifidobacterial genomes, and suggest the acquisition of antibiotic resistance genes through HGT events. These data were further corroborated by growth experiments directed to evaluate bacitracin A resistance in Bifidobacterium spp., a property that was predicted by in silico analyses to be part of the HGT-acquired resistome.

mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Roy Ummels ◽  
Abdallah M. Abdallah ◽  
Vincent Kuiper ◽  
Anouar Aâjoud ◽  
Marion Sparrius ◽  
...  

ABSTRACTConjugative plasmids have been identified in a wide variety of different bacteria, ranging from proteobacteria to firmicutes, and conjugation is one of the most efficient routes for horizontal gene transfer. The most widespread mechanism of plasmid conjugation relies on different variants of the type IV secretion pathway. Here, we describe the identification of a novel type of conjugative plasmid that seems to be unique for mycobacteria. Interestingly, while this plasmid is efficiently exchanged between different species of slow-growing mycobacteria, includingMycobacterium tuberculosis, it could not be transferred to any of the fast-growing mycobacteria tested. Genetic analysis of the conjugative plasmid showed the presence of a locus containing homologues of three type IV secretion system components and a relaxase. In addition, a new type VII secretion locus was present. Using transposon insertion mutagenesis, we show that in fact both these secretion systems are essential for conjugation, indicating that this plasmid represents a new class of conjugative plasmids requiring two secretion machineries. This plasmid could form a useful new tool to exchange or introduce DNA in slow-growing mycobacteria.IMPORTANCEConjugative plasmids play an important role in horizontal gene transfer between different bacteria and, as such, in their adaptation and evolution. This effect is most obvious in the spread of antibiotic resistance genes. Thus far, conjugation of natural plasmids has been described only rarely for mycobacterial species. In fact, it is generally accepted thatM. tuberculosisdoes not show any recent sign of horizontal gene transfer. In this study, we describe the identification of a new widespread conjugative plasmid that can also be efficiently transferred toM. tuberculosis. This plasmid therefore poses both a threat and an opportunity. The threat is that, through the acquisition of antibiotic resistance markers, this plasmid could start a rapid spread of antibiotic resistance genes between pathogenic mycobacteria. The opportunity is that we could use this plasmid to generate new tools for the efficient introduction of foreign DNA in slow-growing mycobacteria.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
María Getino ◽  
David J. Sanabria-Ríos ◽  
Raúl Fernández-López ◽  
Javier Campos-Gómez ◽  
José M. Sánchez-López ◽  
...  

ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. IMPORTANCE Diseases caused by multidrug-resistant bacteria are taking an important toll with respect to human morbidity and mortality. The most relevant antibiotic resistance genes come to human pathogens carried by plasmids, mainly using conjugation as a transmission mechanism. Here, we identified and characterized a series of compounds that were active against several plasmid groups of clinical relevance, in a wide variety of bacterial hosts. These inhibitors might be used for fighting antibiotic-resistance dissemination by inhibiting conjugation. Potential inhibitors could be used in specific settings (e.g., farm, fish factory, or even clinical settings) to investigate their effect in the eradication of undesired resistances.


2021 ◽  
Author(s):  
Heather A. Kittredge ◽  
Kevin M. Dougherty ◽  
Sarah E. Evans

AbstractAntibiotic resistance genes (ARGs) are ubiquitous in the environment and pose a serious risk to human and veterinary health. While many studies focus on the spread of live antibiotic resistant bacteria throughout the environment, it is unclear whether extracellular ARGs from dead cells can transfer to live bacteria to facilitate the evolution of antibiotic resistance in nature. Here, we inoculate antibiotic-free soil with extracellular ARGs (eARGs) from dead Pseudeononas stutzeri cells and track the evolution of antibiotic resistance via natural transformation – a mechanism of horizontal gene transfer involving the genomic integration of eARGs. We find that transformation facilitates the rapid evolution of antibiotic resistance even when eARGs occur at low concentrations (0.25 μg g-1 soil). However, when eARGs are abundant, transformation increases substantially. The evolution of antibiotic resistance was high under soil moistures typical in terrestrial systems (5%-30% gravimetric water content) and was only inhibited at very high soil moistures (>30%). While eARGs transformed into live cells at a low frequency, exposure to a low dose of antibiotic allowed a small number of transformants to reach high abundances in laboratory populations, suggesting even rare transformation events pose a risk to human health. Overall, this work demonstrates that dead bacteria and their eARGs are an overlooked path to antibiotic resistance, and that disinfection alone is insufficient to stop the spread of antibiotic resistance. More generally, the spread of eARGs in antibiotic-free soil suggests that transformation allows genetic variants to establish at low frequencies in the absence of antibiotic selection.ImportanceOver the last decade, antibiotics in the environment have gained increasing attention because they can select for drug-resistant phenotypes that would have otherwise gone extinct. To counter this effect, bacterial populations exposed to antibiotics often undergo disinfection. However, the release of extracellular antibiotic resistance genes (eARGs) into the environment following disinfection can promote the transfer of eARGs through natural transformation. This phenomenon is well-documented in wastewater and drinking water, but yet to be investigated in soil. Our results directly demonstrate that eARGs from dead bacteria are an important, but often overlooked source of antibiotic resistance in soil. We conclude that disinfection alone is insufficient to prevent the spread of ARGs. Special caution should be taken in releasing antibiotics into the environment, even if there are no live antibiotic resistant bacteria in the community, as transformation allows DNA to maintain its biological activity past microbial death.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Michael R. Brooks ◽  
Lyan Padilla-Vélez ◽  
Tarannum A. Khan ◽  
Azaan A. Qureshi ◽  
Jason B. Pieper ◽  
...  

ABSTRACT Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a major cause of soft tissue infections in dogs and occasionally infects humans. Hypervirulent multidrug-resistant (MDR) MRSP clones have emerged globally. The sequence types ST71 and ST68, the major epidemic clones of Europe and North America, respectively, have spread to other regions. The genetic factors underlying the success of these clones have not been investigated thoroughly. Here, we performed a comprehensive genomic analysis of 371 S. pseudintermedius isolates to dissect the differences between major clonal lineages. We show that the prevalence of genes associated with antibiotic resistance, virulence, prophages, restriction-modification (RM), and CRISPR/Cas systems differs significantly among MRSP clones. The isolates with GyrA+GrlA mutations, conferring fluoroquinolone resistance, carry more of these genes than those without GyrA+GrlA mutations. ST71 and ST68 clones carry lineage-specific prophages with genes that are likely associated with their increased fitness and virulence. We have discovered that a prophage, SpST71A, is inserted within the comGA gene of the late competence operon comG in the ST71 lineage. A functional comG is essential for natural genetic competence, which is one of the major modes of horizontal gene transfer (HGT) in bacteria. The RM and CRISPR/Cas systems, both major genetic barriers to HGT, are also lineage specific. Clones harboring CRISPR/Cas or a prophage-disrupted comG exhibited less genetic diversity and lower rates of recombination than clones lacking these systems. After Listeria monocytogenes, this is the second example of prophage-mediated competence disruption reported in any bacteria. These findings are important for understanding the evolution and clonal expansion of MDR MRSP clones. IMPORTANCE Staphylococcus pseudintermedius is a bacterium responsible for clinically important infections in dogs and can infect humans. In this study, we performed genomic analysis of 371 S. pseudintermedius isolates to understand the evolution of antibiotic resistance and virulence in this organism. The analysis covered significant reported clones, including ST71 and ST68, the major epidemic clones of Europe and North America, respectively. We show that the prevalence of genes associated with antibiotic resistance, virulence, prophages, and horizontal gene transfer differs among clones. ST71 and ST68 carry prophages with novel virulence and antibiotic resistance genes. Importantly, site-specific integration of a prophage, SpST71A, has led to the disruption of the genetic competence operon comG in ST71 clone. A functional comG is essential for the natural uptake of foreign DNA and thus plays an important role in the evolution of bacteria. This study provides insight into the emergence and evolution of antibiotic resistance and virulence in S. pseudintermedius, which may help in efforts to combat this pathogen.


Sign in / Sign up

Export Citation Format

Share Document