scholarly journals Evolutionary Genetics of Mycobacterium tuberculosis and HIV-1: “The Tortoise and the Hare”

2021 ◽  
Vol 9 (1) ◽  
pp. 147
Author(s):  
Ana Santos-Pereira ◽  
Carlos Magalhães ◽  
Pedro M. M. Araújo ◽  
Nuno S. Osório

The already enormous burden caused by Mycobacterium tuberculosis and Human Immunodeficiency Virus type 1 (HIV-1) alone is aggravated by co-infection. Despite obvious differences in the rate of evolution comparing these two human pathogens, genetic diversity plays an important role in the success of both. The extreme evolutionary dynamics of HIV-1 is in the basis of a robust capacity to evade immune responses, to generate drug-resistance and to diversify the population-level reservoir of M group viral subtypes. Compared to HIV-1 and other retroviruses, M. tuberculosis generates minute levels of genetic diversity within the host. However, emerging whole-genome sequencing data show that the M. tuberculosis complex contains at least nine human-adapted phylogenetic lineages. This level of genetic diversity results in differences in M. tuberculosis interactions with the host immune system, virulence and drug resistance propensity. In co-infected individuals, HIV-1 and M. tuberculosis are likely to co-colonize host cells. However, the evolutionary impact of the interaction between the host, the slowly evolving M. tuberculosis bacteria and the HIV-1 viral “mutant cloud” is poorly understood. These evolutionary dynamics, at the cellular niche of monocytes/macrophages, are also discussed and proposed as a relevant future research topic in the context of single-cell sequencing.

2020 ◽  
Vol 18 (3) ◽  
pp. 210-218
Author(s):  
Guolong Yu ◽  
Yan Li ◽  
Xuhe Huang ◽  
Pingping Zhou ◽  
Jin Yan ◽  
...  

Background: HIV-1 CRF55_01B was first reported in 2013. At present, no report is available regarding this new clade’s polymorphisms in its functionally critical regions protease and reverse transcriptase. Objective: To identify the diversity difference in protease and reverse transcriptase between CRF55_01B and its parental clades CRF01_AE and subtype B; and to investigate CRF55_01B’s drug resistance mutations associated with the protease inhibition and reverse transcriptase inhibition. Methods: HIV-1 RNA was extracted from plasma derived from a MSM population. The reverse transcription and nested PCR amplification were performed following our in-house PCR procedure. Genotyping and drug resistant-associated mutations and polymorphisms were identified based on polygenetic analyses and the usage of the HIV Drug Resistance Database, respectively. Results: A total of 9.24 % of the identified CRF55_01B sequences bear the primary drug resistance. CRF55_01B contains polymorphisms I13I/V, G16E and E35D that differ from those in CRF01_AE. Among the 11 polymorphisms in the RT region, seven were statistically different from CRF01_AE’s. Another three polymorphisms, R211K (98.3%), F214L (98.3%), and V245A/E (98.3 %.), were identified in the RT region and they all were statistically different with that of the subtype B. The V179E/D mutation, responsible for 100% potential low-level drug resistance, was found in all CRF55_01B sequences. Lastly, the phylogenetic analyses demonstrated 18 distinct clusters that account for 35% of the samples. Conclusions: CRF55_01B’s pol has different genetic diversity comparing to its counterpart in CRF55_01B’s parental clades. CRF55_01B has a high primary drug resistance presence and the V179E/D mutation may confer more vulnerability to drug resistance.


2020 ◽  
Vol 92 (12) ◽  
pp. 3209-3218
Author(s):  
Xin Guan ◽  
Min Han ◽  
Zhiju Li ◽  
Lihua Wang ◽  
Donghe Zhang ◽  
...  

Author(s):  
Myuki Esashika Crispim ◽  
Monica Nogueira da Guarda Reis ◽  
Mariane Martins de Araujo Stefani

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242971
Author(s):  
Yan Li ◽  
Yu Pang ◽  
Tianhua Zhang ◽  
Xiaoping Xian ◽  
Jian Yang ◽  
...  

Objectives The prevalence of drug-resistant TB in Shaanxi Province is higher than other areas. This study was aimed to investigate the genetic diversity and epidemiology of Mycobacterium tuberculosis clinical strains in Shaanxi Province, China. Methods From January to December 2016, a total of 298 Mycobacterium tuberculosis clinical isolates from smear-positive pulmonary tuberculosis patients were genotyped by Mcspoligotyping and 15-locus VNTR. Results We found that the Beijing family strains was the most prominent family(81.54%, 243/298). Other family strains included T family(9.06%, 27/298), U family(0.67%, 2/298), LAM9 family(0.34%, 1/298) and Manu family(0.34%, 1/298). The rates of multidrug-resistant (MDR) M.Tuberculosis, age, type of case and education between Beijing and non-Beijing family strains were not statistically different, while the distribution in the three different regions among these was statistically significant. VNTR results showed that strains were classified into 280 genotypes, and 33 (11.07%) strains could be grouped into 14 clusters. 11 of the 15-VNTR loci were highly or moderately discriminative according to the Hunter-Gaston discriminatory index. Conclusions We concluded that the Beijing family genotype was the most prevalent genotype and 15-locus VNTR typing might be suitable for genotyping of M. tuberculosis in Shaanxi Province. There was less association between Beijing family genotypes and drug resistance in our study area.


2016 ◽  
Vol 2 ◽  
pp. 18
Author(s):  
José Carlos Couto-Fernandez ◽  
B.C.L. Marques ◽  
C. Silva-De-Jesus ◽  
M. Neves ◽  
J.H.S. Pilotto ◽  
...  

2011 ◽  
Vol 51 (3) ◽  
pp. 186-191 ◽  
Author(s):  
Tiago Gräf ◽  
Caroline P.B. Passaes ◽  
Luis G.E. Ferreira ◽  
Edmundo C. Grisard ◽  
Mariza G. Morgado ◽  
...  

2011 ◽  
Vol 83 (8) ◽  
pp. 1301-1307 ◽  
Author(s):  
Adriana Santarém Ferreira ◽  
Ludimila Paula Vaz Cardoso ◽  
Mariane Martins de Araújo Stefani

Sign in / Sign up

Export Citation Format

Share Document