scholarly journals Microbiomes of Blood-Feeding Arthropods: Genes Coding for Essential Nutrients and Relation to Vector Fitness and Pathogenic Infections. A Review

2021 ◽  
Vol 9 (12) ◽  
pp. 2433
Author(s):  
Daniel E. Sonenshine ◽  
Philip E. Stewart

Background: Blood-feeding arthropods support a diverse array of symbiotic microbes, some of which facilitate host growth and development whereas others are detrimental to vector-borne pathogens. We found a common core constituency among the microbiota of 16 different arthropod blood-sucking disease vectors, including Bacillaceae, Rickettsiaceae, Anaplasmataceae, Sphingomonadaceae, Enterobacteriaceae, Pseudomonadaceae, Moraxellaceae and Staphylococcaceae. By comparing 21 genomes of common bacterial symbionts in blood-feeding vectors versus non-blooding insects, we found that certain enteric bacteria benefit their hosts by upregulating numerous genes coding for essential nutrients. Bacteria of blood-sucking vectors expressed significantly more genes (p < 0.001) coding for these essential nutrients than those of non-blooding insects. Moreover, compared to endosymbionts, the genomes of enteric bacteria also contained significantly more genes (p < 0.001) that code for the synthesis of essential amino acids and proteins that detoxify reactive oxygen species. In contrast, microbes in non-blood-feeding insects expressed few gene families coding for these nutrient categories. We also discuss specific midgut bacteria essential for the normal development of pathogens (e.g., Leishmania) versus others that were detrimental (e.g., bacterial toxins in mosquitoes lethal to Plasmodium spp.).

Parasitology ◽  
1998 ◽  
Vol 116 (S1) ◽  
pp. S65-S72 ◽  
Author(s):  
P. A. Nuttall

SummaryReciprocal interactions of parasites transmitted by blood-sucking arthropod vectors have been studied primarily at the parasite–host and parasite–vector interface. The third component of this parasite triangle, the vector–host interface, has been largely ignored. Now there is growing realization that reciprocal interactions between arthropod vectors and their vertebrate hosts play a pivotal role in the survival of arthropod-borne viruses, bacteria, and protozoa. The vector–host interface is the site where the haematophagous arthropod feeds. To obtain a blood meal, the vector must overcome the host's inflammatory, haemostatic, and immune responses. This problem is greatest for ixodid ticks which may imbibe as much as 15 ml blood whilst continuously attached to their host for 10 days or more. To feed successfully, the interface between tick and host becomes a battle between the host's mechanisms for combating the tick and the tick's armoury of bioactive proteins and other chemicals which it secretes, via saliva, into the feeding lesion formed in the host's skin. Parasites entering this battlefield encounter a privileged site in their vertebrate host that has been profoundly modified by the pharmacological activities of their vector's saliva. For example, ticks suppress natural killer cells and interferons, both of which have potent antiviral activities. Not surprisingly, vector-borne parasites exploit the immunomodulated feeding site to promote their transmission and infection. Certain tick-borne viruses are so successful at this that they are transmitted from one infected tick, through the vertebrate host to a co-feeding uninfected tick, without a detectable viraemia (virus circulating in the host's blood), and with no untoward effect on the host. When such viruses do have an adverse effect on the host, they may impede their vectors' feeding. Thus important interactions between ticks and tick-borne parasites are displaced to the interface with their vertebrate host - the skin site of blood-feeding and infection.


2017 ◽  
Vol 199 (15) ◽  
Author(s):  
Nana Y. D. Ankrah ◽  
Junbo Luan ◽  
Angela E. Douglas

ABSTRACT An important factor determining the impact of microbial symbionts on their animal hosts is the balance between the cost of nutrients consumed by the symbionts and the benefit of nutrients released back to the host, but the quantitative significance of nutrient exchange in symbioses involving multiple microbial partners has rarely been addressed. In this study on the association between two intracellular bacterial symbionts, “Candidatus Portiera aleyrodidarum” and “Candidatus Hamiltonella defensa,” and their animal host, the whitefly Bemisia tabaci, we apply metabolic modeling to investigate host-symbiont nutrient exchange. Our in silico analysis revealed that >60% of the essential amino acids and related metabolites synthesized by “Candidatus Portiera aleyrodidarum” are utilized by the host, including a substantial contribution of nitrogen recycled from host nitrogenous waste, and that these interactions are required for host growth. In contrast, “Candidatus Hamiltonella defensa” retains most or all of the essential amino acids and B vitamins that it is capable of synthesizing. Furthermore, “Candidatus Hamiltonella defensa” suppresses host growth in silico by competition with “Candidatus Portiera aleyrodidarum” for multiple host nutrients, by suppressing “Candidatus Portiera aleyrodidarum” growth and metabolic function, and also by consumption of host nutrients that would otherwise be allocated to host growth. The interpretation from these modeling outputs that “Candidatus Hamiltonella defensa” is a nutritional parasite could not be inferred reliably from gene content alone but requires consideration of constraints imposed by the structure of the metabolic network. Furthermore, these quantitative models offer precise predictions for future experimental study and the opportunity to compare the functional organization of metabolic networks in different symbioses. IMPORTANCE The metabolic functions of unculturable intracellular bacteria with much reduced genomes are traditionally inferred from gene content without consideration of how the structure of the metabolic network may influence flux through metabolic reactions. The three-compartment model of metabolic flux between two bacterial symbionts and their insect host constructed in this study revealed that one symbiont is structured to overproduce essential amino acids for the benefit of the host, but the essential amino acid production in the second symbiont is quantitatively constrained by the structure of its network, rendering it “selfish” with respect to these nutrients. This study demonstrates the importance of quantitative flux data for elucidation of the metabolic function of symbionts. The in silico methodology can be applied to other symbioses with intracellular bacteria.


2021 ◽  
Vol 42 (1) ◽  
pp. 41-48
Author(s):  
A.O. Omonona ◽  
S.A. Abioye ◽  
P.O. Odeniran ◽  
I.O. Ademola

Dipteran flies play significant role in disease transmission to human, domestic and wild animals. The distribution and diversity of dipteran flies of medical and veterinary importance in Old Oyo national park and its significant importance were assessed in relation to altitude and ecology. Twelve Nzi traps were set at 50 m equidistance to capture dipteran flies between February and August 2019. A total of 1529 dipteran flies belonging to five families were captured. More dipteran flies (64.9%) were trapped during the dry season than wet season (35.1%) (X2 = 270.8; P < 0.0001; OR = 3.41). Of the total flies caught, 289 representing 18.9% were identified as haematophagus flies. Differences in the total haematophagus fly 2 abundance was not significant across the altitudinal levels (X2 = 0.432; P = 0.511; OR = 1.13). The relative apparent density (RAD) of 0.47, 0.22, 0.13, 0.09, 0.07 and 0.03 (flies/trap/day) was observed in Glossina, Hippobosca, Tabanus, Haematopota, Chrysops, Ancala and, respectively. The diversity index of 0.55 and 0.76 were determined for Glossina spp. and Tabanids respectively. The non-blood sucking flies in order of abundance are Musca domestica (43.6%), Fanniacanicularis (41.9%), Chrysomyia bezziana (8.9%), Lucilia sericata (5.6%). If the value-chain of ecotourism is to be promoted in the park, vector-borne arthropods need to be controlled through the use of integrated methods. Keywords: Ecological survey, haematophagus flies, Old Oyo national Park, RAD


Acta Tropica ◽  
2018 ◽  
Vol 186 ◽  
pp. 69-101 ◽  
Author(s):  
J. Guillermo Jiménez-Cortés ◽  
Rodolfo García-Contreras ◽  
Martha I. Bucio-Torres ◽  
Margarita Cabrera-Bravo ◽  
Alex Córdoba-Aguilar ◽  
...  

Vaccines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 10 ◽  
Author(s):  
Jessica E. Manning ◽  
Tineke Cantaert

The current increase in vector-borne disease worldwide necessitates novel approaches to vaccine development targeted to pathogens delivered by blood-feeding arthropod vectors into the host skin. A concept that is gaining traction in recent years is the contribution of the vector or vector-derived components, like salivary proteins, to host-pathogen interactions. Indeed, the triad of vector-host-pathogen interactions in the skin microenvironment can influence host innate and adaptive responses alike, providing an advantage to the pathogen to establish infection. A better understanding of this “bite site” microenvironment, along with how host and vector local microbiomes immunomodulate responses to pathogens, is required for future vaccines for vector-borne diseases. Microneedle administration of such vaccines may more closely mimic vector deposition of pathogen and saliva into the skin with the added benefit of near painless vaccine delivery. Focusing on the ‘micro’–from microenvironments to microbiomes to microneedles–may yield an improved generation of vector-borne disease vaccines in today’s increasingly complex world.


2017 ◽  
Vol 115 (5) ◽  
pp. 1009-1014 ◽  
Author(s):  
William E. Bradshaw ◽  
Joshua Burkhart ◽  
John K. Colbourne ◽  
Rudyard Borowczak ◽  
Jacqueline Lopez ◽  
...  

The spread of blood-borne pathogens by mosquitoes relies on their taking a blood meal; if there is no bite, there is no disease transmission. Although many species of mosquitoes never take a blood meal, identifying genes that distinguish blood feeding from obligate nonbiting is hampered by the fact that these different lifestyles occur in separate, genetically incompatible species. There is, however, one unique extant species with populations that share a common genetic background but blood feed in one region and are obligate nonbiters in the rest of their range: Wyeomyia smithii. Contemporary blood-feeding and obligate nonbiting populations represent end points of divergence between fully interfertile southern and northern populations. This divergence has undoubtedly resulted in genetic changes that are unrelated to blood feeding, and the challenge is to winnow out the unrelated genetic factors to identify those related specifically to the evolutionary transition from blood feeding to obligate nonbiting. Herein, we determine differential gene expression resulting from directional selection on blood feeding within a polymorphic population to isolate genetic differences between blood feeding and obligate nonbiting. We show that the evolution of nonbiting has resulted in a greatly reduced metabolic investment compared with biting populations, a greater reliance on opportunistic metabolic pathways, and greater reliance on visual rather than olfactory sensory input. W. smithii provides a unique starting point to determine if there are universal nonbiting genes in mosquitoes that could be manipulated as a means to control vector-borne disease.


2021 ◽  
Author(s):  
Phineas T. Hamilton ◽  
Elodie Maluenda ◽  
Anouk Sarr ◽  
Alessandro Belli ◽  
Georgia Hurry ◽  
...  

AbstractBackgroundVector-borne diseases remain major causes of human morbidity and mortality. It is increasingly recognized that the community of microbes inhabiting arthropods can strongly affect their vector competence, but the role of the tick microbiome in Borrelia transmission – the cause of Lyme disease – remains unclear.ResultsHere, we use a large-scale experiment to clarify the reciprocal interactions between Borrelia afzelii and the microbiome of Ixodes ricinus, its primary vector. In contrast to other reports, we find that depletion of the bacterial microbiome in larval ticks has no effect on their subsequent acquisition of B. afzelii during blood feeding on infected mice. Rather, exposure to B. afzelii-infected hosts drives pervasive changes to the tick microbiome, decreasing overall bacterial abundance, shifting bacterial community composition, and increasing bacterial diversity. These effects appear to be independent of the acquisition of B. afzelii by ticks, suggesting they are mediated by physiological or immunological aspects of B. afzelii infection in the rodent host.ConclusionsManipulation of the microbiome of I. ricinus larvae had no effect on their ability to acquire B. afzelii. In contrast, B. afzelii infection in the mouse had dramatic effects on the composition of the gut microbiome in I. ricinus nymphs. Our study demonstrates that vector-borne infections in the vertebrate host shape the microbiome of the arthropod vector.


Author(s):  
Soorya Sukumaran ◽  
Rajan Maheswaran

Background: Mosquitoes are blood sucking arthropods and serve as vectors of many diseases causing serious health problems to human beings. Culex quinquefasciatus and Aedes aegypti were responsible for Filariasis and Dengue. Syn­thetic pesticides were effective against mosquitoes as well as main sources of environmental pollution and most of them are immunosuppressant. Botanicals were widely used as insecticides, growth disruptors, repellents, etc. The aim of this research was to determine larvicidal properties of powdered leaf, Elytraria acaulis against late third or early fourth in­star larvae of Cx. quinquefasciatus and Ae. aegypti. Methods: Larvae of Cx. quinquefasciatus and Ae. aegypti were tested at various concentrations of 100, 120, 140, 160, 180 and 200mg/100ml and mortality was recorded after 24h. The LC50 values of the E. acaulis leaf powder were calcu­lated by Probit analysis. Results: The plant powder exhibited strong larvicidal activity against Cx. quinquefasciatus with LC50 value of 116.07mg/100ml against Ae. aegypti 124.25mg/100ml respectively. The result indicated that the plant powder of E. acaulis showed potential larvicidal activity against Cx. quinquefasciatus and Ae. aegypti. Conclusion: The overall findings of the present investigation suggested that the E. acaulis highly effective against Cx. quinquefasciatus and Ae. aegypti larvae. Elytraria acaulis may be used as an alternative to synthetic chemical pesticides for control of vectors to reduce vector borne diseases and did not harm to total environment.


2021 ◽  
Author(s):  
Meng Ni ◽  
Teng Zhao ◽  
Hui-xin Lv ◽  
Man-jin Li ◽  
Dan Xing ◽  
...  

Abstract Background: Aedes aegypti is one of the most important vector worldwide, and its survival and reproductive processes depend heavily on the olfactory system. In this study, the expression levels of all odorant receptor (OR) genes of Ae. aegypti were explored in different physiological periods to identify olfactory genes that may be associated with mosquito blood sucking and searching for oviposition sites.Methods: Four groups, consisting of Ae. aegypti males (M), pre-blood-feeding females (F), post-blood-feeding females (B) and post-oviposition females (O), were established. A total of 114 pairs of primer targeting all OR genes were designed based on the whole genome of Ae. aegypti. The expression of OR genes was evaluated by real-time fluorescence quantitative PCR for relative quantification and the comparison of differences between groups.Results: A total of 53 differentially expressed OR genes were identified between males and females in Ae. aegypti antennae. And 8, 5 and 13 differentially expressed OR genes were identified before versus after blood feeding, before versus after oviposition and post-blood-feeding versus post-oviposition, respectively. Meanwhile, 16 OR genes were significantly differentially expressed in multiple physiological periods of mosquitoes.Conclusions: A large number of ORs with significant intergroup differences and high expression levels were screened in this study, including OR75, OR88, OR110 and OR115 and so on. Some of these genes are reported for the first time, providing possible targets for the development of mosquito control pathways based on the olfactory system.


Sign in / Sign up

Export Citation Format

Share Document