scholarly journals Lactobacillus delbrueckii CRL 581 Differentially Modulates TLR3-Triggered Antiviral Innate Immune Response in Intestinal Epithelial Cells and Macrophages

2021 ◽  
Vol 9 (12) ◽  
pp. 2449
Author(s):  
Mariano Elean ◽  
Leonardo Albarracin ◽  
Kohtaro Fukuyama ◽  
Binghui Zhou ◽  
Mikado Tomokiyo ◽  
...  

Lactobacillus delbrueckii subsp. lactis CRL 581 beneficially modulates the intestinal antiviral innate immune response triggered by the Toll-like receptor 3 (TLR3) agonist poly(I:C) in vivo. This study aimed to characterize further the immunomodulatory properties of the technologically relevant starter culture L. delbrueckii subsp. lactis CRL 581 by evaluating its interaction with intestinal epithelial cells and macrophages in the context of innate immune responses triggered by TLR3. Our results showed that the CRL 581 strain was able to adhere to porcine intestinal epithelial (PIE) cells and mucins. The CRL 581 strain also augmented the expression of antiviral factors (IFN-α, IFN-β, Mx1, OAS1, and OAS2) and reduced inflammatory cytokines in PIE cells triggered by TLR3 stimulation. In addition, the influence of L. delbrueckii subsp. lactis CRL 581 on the response of murine RAW macrophages to the activation of TLR3 was evaluated. The CRL 581 strain was capable of enhancing the expression of IFN-α, IFN-β, IFN-γ, Mx1, OAS1, TNF-α, and IL-1β. Of note, the CRL 581 strain also augmented the expression of IL-10 in macrophages. The results of this study show that the high proteolytic strain L. delbrueckii spp. lactis CRL 581 was able to beneficially modulate the intestinal innate antiviral immune response by regulating the response of both epithelial cells and macrophages relative to TLR3 activation.

2009 ◽  
Vol 133 (1-2) ◽  
pp. 86-93 ◽  
Author(s):  
María G. Vizoso Pinto ◽  
Manuel Rodriguez Gómez ◽  
Stephanie Seifert ◽  
Bernhard Watzl ◽  
Wilhelm H. Holzapfel ◽  
...  

2017 ◽  
Vol 8 (2) ◽  
pp. 309-321 ◽  
Author(s):  
H. Kobayashi ◽  
P. Kanmani ◽  
T. Ishizuka ◽  
A. Miyazaki ◽  
J. Soma ◽  
...  

The bovine intestinal epithelial cell line (BIE cells) expresses the Toll-like receptor (TLR)3 and is able to mount an antiviral immune response after the stimulation with poly(I:C). In the present study, we aimed to further characterise the antiviral defence mechanisms in BIE cells by evaluating the innate immune response triggered by rotavirus (RV) infection. In addition, we attempted to determine whether immunobiotic bifidobacteria are able to confer protection of BIE cells against RV infection by beneficially modulating the antiviral immune response. RV OSU (porcine) and UK (bovine) effectively infected BIE cells, while a significant lower capacity to infect BIE cells was observed for human (Wa) and murine (EW) RV. We observed that viral infection in BIE cells triggered TLR3/RIG-I-mediated immune responses with activation of IRF3 and TRAF3, induction of interferon beta (IFN-β) and up-regulation of inflammatory cytokines. Our results also demonstrated that preventive treatments with Bifidobacterium infantis MCC12 or Bifidobacterium breve MCC1274 significantly reduced RV titres in infected BIE cells and differentially modulated the innate immune response. Of note, both strains significantly improved the production of the antiviral factor IFN-β in RV-infected BIE cells. In conclusion, this work provides comprehensive information on the antiviral immune response of BIE cells against RV, that can be further studied for the development of strategies aimed to improve antiviral defences in bovine intestinal epithelial cells. Our results also demonstrate that BIE cells could be used as a newly immunobiotic evaluation system against RV infection for application in the bovine host.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 328 ◽  
Author(s):  
Claudio Salaris ◽  
Melania Scarpa ◽  
Marina Elli ◽  
Alice Bertolini ◽  
Simone Guglielmetti ◽  
...  

SARS-CoV-2 is a newly emerging virus that currently lacks curative treatments. Lactoferrin (LF) is a naturally occurring non-toxic glycoprotein with broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. In this study, we assessed the potential of LF in the prevention of SARS-CoV-2 infection in vitro. Antiviral immune response gene expression was analyzed by qRT-PCR in uninfected Caco-2 intestinal epithelial cells treated with LF. An infection assay for SARS-CoV-2 was performed in Caco-2 cells treated or not with LF. SARS-CoV-2 titer was determined by qRT-PCR, plaque assay and immunostaining. Inflammatory and anti-inflammatory cytokine production was determined by qRT-PCR. LF significantly induced the expression of IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes. Furthermore, LF partially inhibited SARS-CoV-2 infection and replication in Caco-2 intestinal epithelial cells. Our in vitro data support LF as an immune modulator of the antiviral immune response with moderate effects against SARS-CoV-2 infection.


2011 ◽  
Vol 42 (1) ◽  
pp. 111 ◽  
Author(s):  
Shoichi Hosoya ◽  
Julio Villena ◽  
Tomoyuki Shimazu ◽  
Masanori Tohno ◽  
Hitomi Fujie ◽  
...  

2009 ◽  
Vol 297 (6) ◽  
pp. G1172-G1180 ◽  
Author(s):  
Diana M. Lim ◽  
Sneha Narasimhan ◽  
Carmen Z. Michaylira ◽  
Mei-Lun Wang

Despite its position at the front line against ingested pathogens, very little is presently known about the role of the esophageal epithelium in host innate immune defense. As a key player in the innate immune response, Toll-like receptor (TLR) signaling has not been well characterized in human esophageal epithelial cells. In the present study, we investigated the inflammatory response and signaling pathways activated by TLR stimulation of human esophageal cells in vitro. Using quantitative RT-PCR, we profiled the expression pattern of human TLRs 1–10 in primary esophageal keratinocytes (EPC2), immortalized nontransformed esophageal keratinocytes (EPC2-hTERT), and normal human esophageal mucosal biopsies and found that TLRs 1, 2, 3, and 5 were expressed both in vivo and in vitro. Using the cytokine IL-8 as a physiological read out of the inflammatory response, we found that TLR3 is the most functional of the expressed TLRs in both primary and immortalized esophageal epithelial cell lines in response to its synthetic ligand polyinosinic polycytidylic acid [poly(I:C)]. Through reporter gene studies, we show that poly(I:C)-induced NF-κB activation is critical for the transactivation of the IL-8 promoter in vitro and that nuclear translocation of NF-κB occurs at an early time point following poly(I:C) stimulation of esophageal epithelial cells. Importantly, we also show that poly(I:C) stimulation induces the NF-κB-dependent esophageal epithelial expression of TLR2, leading to enhanced epithelial responsiveness of EPC2-hTERT cells to TLR2 ligand stimulation, suggesting an important regulatory role for TLR3-mediated NF-κB signaling in the innate immune response of esophageal epithelial cells. Our findings demonstrate for the first time that TLR3 is highly functional in the human esophageal epithelium and that TLR3-mediated NF-κB signaling may play an important regulatory role in esophageal epithelial homeostasis.


Sign in / Sign up

Export Citation Format

Share Document