scholarly journals Exploration of Microalgal Species for Nutrient Removal from Anaerobically Digested Swine Wastewater and Potential Lipids Production

2021 ◽  
Vol 9 (12) ◽  
pp. 2469
Author(s):  
Zhihui Chen ◽  
Yunhua Xiao ◽  
Tan Liu ◽  
Mingmin Yuan ◽  
Gang Liu ◽  
...  

Bio-treatment of anaerobically treated swine wastewater (ADSW) mediated by microalgae has been deemed as a promising strategy. In the present study, six microalgal strains were used to conduct batch experiments in 0~100% ADSW in order to evaluate their potentials for nutrient removal and biodiesel production. Two strains, Chlorella vulgaris FACHB-8 and Chlorella sp. FACHB-31, were selected based on their better growth performances, higher tolerance to wastewater (up to 100%), and better nutrient removal abilities. The capacity of each strain to remove TN, TP, NH4+-N, as well as lipid production and biomass composition in 100% ADSW were further examined. After 15 days of culture, 87.68~89.85%, 92.61~93.68%, and 97.02~97.86% of the nitrogen, phosphorus, and ammonia nitrogen were removed by Chlorella sp. FACHB-31 and C. vulgaris FACHB-8. Their lipid content and lipid productivities were 29.63~33.33% and 18.91~23.10 mg L−1 d−1, respectively. Proteins were both the major biomass fraction followed by lipids and then carbohydrates. Their fatty acid profiles both mainly consisted of C-16:0, C-18:1, C-18:0, and C-18:2. Taken together, our results suggest that C. vulgaris FACHB-8 and Chlorella sp. FACHB-31 are potential candidates for biodiesel production by using ADSW as a good feedstock.

2020 ◽  
Vol 141 ◽  
pp. 03009
Author(s):  
Pichayatorn Bunkaew ◽  
Sasithorn Kongruang

The Plackett-Burman Design (PBD) was applied to study fresh water microalgae cultivation using Chlorella sp. TISTR 8411 to select the influential nutrient factors for biomass and lipid production. The PBD for 13 trials from 11 nutrient factors with 3 levels was studied in the mixotrophic cultivation at 28 0C under 16:8 light and dark photoperiods over 7 days of cultivation time. Two influential factors were chosen as glucose and cobalt chloride hexahydrate to further design via Box-Behnken Design (BBD) in order to optimize the cultivation of this microalgae for biodiesel production. The 17 trials of 3 factors and 3 levels of BBD experimental design technique were applied with varying factors of glucose (20-40 g/L), cobalt chloride hexahydrate (0.01-0.04 mg/L) and light intensity (4,500-7,500 Lux) under 16:8 light and dark photoperiods over 7 days of cultivation time at 28 0C. Result showed that Chlorella sp. TISTR 8411 cultivation yield 0.52 g/L biomass and 0.31 g/L lipid production resulting in approximately 60% of lipid production when cultivated in 20.05 g/L glucose, 0.04 mg/L CoCl26H2O under light intensity of 4,614 Lux with the supplementation of 4.38 g/L NaHCO3 coupled with 1 g/L of both NaNO3 and KH2PO4. Under statically mixotrophic cultivation, result indicated that Chlorella sp. TISTR 8411 had potential to produce high lipid content for biodiesel application and biomass production for nutraceutical application. Further experiment with the longer cultivation period up to 2 weeks would implement not only for monitoring the growth kinetics but also evaluating the suitable type of fatty acid production.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3648
Author(s):  
Savienne M. F. E. Zorn ◽  
Cristiano E. R. Reis ◽  
Messias B. Silva ◽  
Bo Hu ◽  
Heizir F. De Castro

This study aims to evaluate the potential of consortium biomass formation between Mucor circinelloides, an oleaginous filamentous fungal species, and Chlorella vulgaris, in order to promote a straightforward approach to harvest microalgal cells and to evaluate the lipid production in the consortium system. A synthetic medium with glucose (2 g·L−1) and mineral nutrients essential for both fungi and algae was selected. Four different inoculation strategies were assessed, considering the effect of simultaneous vs. separate development of fungal spores and algae cells, and the presence of a supporting matrix aiming at the higher recovery of algae cell rates. The results were evaluated in terms of consortium biomass composition, demonstrating that the strategy using a mature fungal mycelium with a higher algae count may provide biomass samples with up to 79% of their dry weight as algae, still promoting recovery rates greater than 97%. The findings demonstrate a synergistic effect on the lipid accumulation by the fungal strain, at around a fourfold increase when compared to the axenic control, with values in the range of 23% of dry biomass weight. Furthermore, the fatty acid profile from the samples presents a balance between saturated and unsaturated fatty acids that is likely to present an adequate balance for applications such as biodiesel production.


2016 ◽  
Vol 216 ◽  
pp. 135-141 ◽  
Author(s):  
Le Luo ◽  
Huijun He ◽  
Chunping Yang ◽  
Shan Wen ◽  
Guangming Zeng ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4895
Author(s):  
Joseph Christian Utomo ◽  
Young Mo Kim ◽  
Hyun Uk Cho ◽  
Jong Moon Park

This study examined the feasibility of using non-sterilized swine wastewater for lipid production by an isolated microalga, Scenedesmus rubescens. Different dilution ratios using municipal wastewater as a diluent were tested to determine the suitable levels of microalgal growth in the wastewaters, its nutrient removal, and its lipid production. The highest lipid productivity (8.37 mg/L/d) and NH4+ removal (76.49%) were achieved in swine wastewater that had been diluted to 30 times using municipal wastewater. Various bacteria coexisted in the wastewaters during the cultivation of S. rubescens. These results suggest the practical feasibility of a system to produce lipids from swine wastewater by using microalgae.


2018 ◽  
Vol 640-641 ◽  
pp. 943-953 ◽  
Author(s):  
Feng Gao ◽  
Yuan-Yuan Peng ◽  
Chen Li ◽  
Guo-Jing Yang ◽  
Yi-Bing Deng ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 5024
Author(s):  
Vasiliki Patrinou ◽  
Olga N. Tsolcha ◽  
Triantafyllos I. Tatoulis ◽  
Natassa Stefanidou ◽  
Marianna Dourou ◽  
...  

Poultry litter extract (PLE) was treated using a microbial consortium dominated by the filamentous cyanobacterium Leptolyngbya sp. in synergy with heterotrophic microorganisms of the poultry waste. Laboratory- and pilot-scale experiments were conducted under aerobic conditions using suspended and attached growth photobioreactors. Different dilutions of the extract were performed, leading to different initial pollutant (nitrogen, phosphorus, dissolved chemical oxygen demand (d-COD), total sugars) concentrations. Significant nutrient removal rates, biomass productivity, and maximum lipid production were determined for all the systems examined. Higher d-COD, nitrogen, phosphorus, and total sugars removal were recorded in the attached growth reactors in both laboratory- (up to 94.0%, 88.2%, 97.4%, and 79.3%, respectively) and pilot-scale experiments (up to 82.0%, 69.4%, 81.0%, and 83.8%, respectively). High total biomass productivities were also recorded in the pilot-scale attached growth experiments (up to 335.3 mg L−1d−1). The produced biomass contained up to 19.6% lipids (w/w) on a dry weight basis, while the saturated and monounsaturated fatty acids accounted for more than 70% of the total fatty acids, indicating a potential biodiesel production system. We conclude that the processing systems developed in this work can efficiently treat PLE and simultaneously produce lipids suitable as feedstock in the biodiesel manufacture.


2021 ◽  
Vol 299 ◽  
pp. 113668
Author(s):  
Adriana Paulo de Sousa Oliveira ◽  
Paula Assemany ◽  
José Ivo Ribeiro Júnior ◽  
Lidiane Covell ◽  
Adriano Nunes-Nesi ◽  
...  

Author(s):  
Miriam L Gracida‐Valdepeña ◽  
Fernanda Navarro‐Aguirre ◽  
Karla Herrera‐Acosta ◽  
Gabriela Ulloa‐Mercado ◽  
Edna Meza‐Escalante ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document