lipids production
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 26)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 9 (12) ◽  
pp. 2469
Author(s):  
Zhihui Chen ◽  
Yunhua Xiao ◽  
Tan Liu ◽  
Mingmin Yuan ◽  
Gang Liu ◽  
...  

Bio-treatment of anaerobically treated swine wastewater (ADSW) mediated by microalgae has been deemed as a promising strategy. In the present study, six microalgal strains were used to conduct batch experiments in 0~100% ADSW in order to evaluate their potentials for nutrient removal and biodiesel production. Two strains, Chlorella vulgaris FACHB-8 and Chlorella sp. FACHB-31, were selected based on their better growth performances, higher tolerance to wastewater (up to 100%), and better nutrient removal abilities. The capacity of each strain to remove TN, TP, NH4+-N, as well as lipid production and biomass composition in 100% ADSW were further examined. After 15 days of culture, 87.68~89.85%, 92.61~93.68%, and 97.02~97.86% of the nitrogen, phosphorus, and ammonia nitrogen were removed by Chlorella sp. FACHB-31 and C. vulgaris FACHB-8. Their lipid content and lipid productivities were 29.63~33.33% and 18.91~23.10 mg L−1 d−1, respectively. Proteins were both the major biomass fraction followed by lipids and then carbohydrates. Their fatty acid profiles both mainly consisted of C-16:0, C-18:1, C-18:0, and C-18:2. Taken together, our results suggest that C. vulgaris FACHB-8 and Chlorella sp. FACHB-31 are potential candidates for biodiesel production by using ADSW as a good feedstock.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zi Ye ◽  
Tongrui Sun ◽  
Huoye Hao ◽  
Yanling He ◽  
Xueyan Liu ◽  
...  

AbstractRhodosporidium toruloides is a useful oleaginous yeast, but lipids production is affected by various factors including nutrients in the culture medium. Herein, the R-ZL2 high-yield mutant strain was used to investigate the effects of different carbon sources (sucrose, glucose, xylose), nitrogen sources (ammonium sulphate, ammonium nitrate), and C/N ratio on lipids production capacity, get the following conclusion (1) Compared with glucose and xylose, sucrose was a superior carbon source for lipids production; (2) When using ammonium sulphate as the nitrogen source, a C/N ratio of 200:1 achieved the highest biomass, lipids production and lipids content (10.7 g/L, 6.32 g/L and 59%, respectively), and lipids produced under different C/N conditions have potential for biodiesel production (except for C/N = 40 and C/N = 80); (3) When using ammonium nitrate as the nitrogen source, a C/N ratio of 200:1 achieved the highest biomass, lipids production and lipids content (12.1 g/L, 8.25 g/L and 65%, respectively), and lipids produced under different C/N ratio conditions have potential for biodiesel production. Thus, a combination of sucrose and ammonium nitrate was optimal for the lipid accumulation in R-ZL2. The findings will lay a foundation for further improving lipids yields.


2021 ◽  
Author(s):  
Silvia Donzella ◽  
Immacolata Serra ◽  
Andrea Fumagalli ◽  
Luisa Pellegrino ◽  
Concetta Compagno

Abstract BackgroundMicrobial lipids have been emerging as a sustainable alternative to vegetable oils and animal fat to produce biodiesel and industrial relevant chemicals. The use of wastes for microbial processes can represent a way for upgrading low value feedstock to high value products, addressing one of the main goals of circular economy, the reduction of wastes by recycling. Two oleaginous yeasts, Rhodosporidiobolus azoricus and Cutaneotrichosporon oleaginosum, were used in this study to demonstrate the feasibility of the proposed approach. ResultsIn this study wastes from industrial food processing, as pumpkin peels and syrup from candied fruits manufacture, were used for yeast cultivation and for lipids production. Evaluation of growth and sugar consumption revealed marked differences between the yeasts in capacity to utilize sucrose and glucose, the main sugars present in the feedstock. In particular, we observed an unexpected limitation in glucose metabolism on mineral media by R. azoricus. Both species showed ability to grow and accumulate lipids on media exclusively composed by undiluted pumpkin peels hydrolysate, and R. azoricus was the best performing. By a two-stage process carried out in bioreactor, this species reached a biomass concentration of 45 g/L (dry weight) containing 55% of lipids, corresponding to a lipid concentration of 24 g/L, with a productivity of 0.26 g/L/h and yield of 0.29 g lipids per g of utilized sugar. These values are close to the highest reported so far from organic wastes. ConclusionsWastes from industrial food processing were sufficient to completely support yeast growth and to induce lipid accumulation. This study provides strong evidence that the concept of valorisation through the production of lipids from the complete metabolism of nutrients present in agro-industrial wastes by oleaginous yeasts is promising for implementation of biotechnological processes in a circular economy contest.


2021 ◽  
Author(s):  
Zi Ye ◽  
Tongrui Sun ◽  
Huoye Hao ◽  
Yanling He ◽  
Xueyan Liu ◽  
...  

Abstract Rhodosporidium toruloides is a useful oleaginous yeast, but lipids production is affected by various factors including nutrients in the culture medium. Herein, the R-ZL2 high-yield mutant strain was used to investigate the effects of different carbon sources (sucrose, glucose, xylose), nitrogen sources (ammonium sulphate, ammonium nitrate), and C/N ratio on lipids production capacity, get the following conclusion (1) Compared with glucose and xylose, sucrose was a superior carbon source for lipids production; (2) When using ammonium sulphate as the nitrogen source, a C/N ratio of 200:1 achieved the highest biomass, lipids production and lipids content (10.7 g/L, 6.32 g/L and 59%, respectively), and lipids produced under different C/N conditions have potential for biodiesel production (except for C/N = 40 and C/N = 80); (3) When using ammonium nitrate as the nitrogen source, a C/N ratio of 200:1 achieved the highest biomass, lipids production and lipids content (12.1 g/L, 8.25 g/L and 65%, respectively), and lipids produced under different C/N ratio conditions have potential for biodiesel production. Thus, a combination of sucrose and ammonium nitrate was optimal for the lipid accumulation in R-ZL2. The findings will lay a foundation for further improving lipids yields.


Author(s):  
Caroline Struyfs ◽  
Bruno P. A. Cammue ◽  
Karin Thevissen

The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hui Yi Leong ◽  
Chih-Kai Chang ◽  
Kuan Shiong Khoo ◽  
Kit Wayne Chew ◽  
Shir Reen Chia ◽  
...  

AbstractGlobal issues such as environmental problems and food security are currently of concern to all of us. Circular bioeconomy is a promising approach towards resolving these global issues. The production of bioenergy and biomaterials can sustain the energy–environment nexus as well as substitute the devoid of petroleum as the production feedstock, thereby contributing to a cleaner and low carbon environment. In addition, assimilation of waste into bioprocesses for the production of useful products and metabolites lead towards a sustainable circular bioeconomy. This review aims to highlight the waste biorefinery as a sustainable bio-based circular economy, and, therefore, promoting a greener environment. Several case studies on the bioprocesses utilising waste for biopolymers and bio-lipids production as well as bioprocesses incorporated with wastewater treatment are well discussed. The strategy of waste biorefinery integrated with circular bioeconomy in the perspectives of unravelling the global issues can help to tackle carbon management and greenhouse gas emissions. A waste biorefinery–circular bioeconomy strategy represents a low carbon economy by reducing greenhouse gases footprint, and holds great prospects for a sustainable and greener world.


2020 ◽  
Vol 30 ◽  
pp. 101847
Author(s):  
Josevan da Silva ◽  
Flávio Luiz Honorato da Silva ◽  
José Evangelista Santos Ribeiro ◽  
Débora Jamila Nóbrega de Melo ◽  
Felipe Augusto Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document