scholarly journals Cation Disorder Caused by Olivine-Ringwoodite Phase Transition Mechanism, Possible Explanation for Blue Olivine Inclusion in a Diamond

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
William Bassett ◽  
Elise Skalwold

Synchrotron X-ray diffraction, as well as visual observations, in a diamond anvil cell (DAC) using soft metal gaskets or slightly reducing gas environment, have revealed that the olivine-ringwoodite transition in olivines of several compositions take place in two steps: step 1: displacive restacking of the oxygen layers, followed by step 2: diffusive reordering of the cations. The initiation of the phase transition was observed at temperatures as low as 200 °C below the reported temperature for the phase transition under hydrostatic conditions. These observations, especially residual disordered cations, have important implications for deep-focus earthquakes, the ability of ringwoodite to host surprising amounts of water, and possibly the observation of a blue olivine inclusion in a natural diamond from Brazil and in a pallasitic meteorite from Russia.

1999 ◽  
Vol 32 (2) ◽  
pp. 174-177 ◽  
Author(s):  
S. Åsbrink ◽  
A. Waśkowska ◽  
H. G. Krane ◽  
L. Gerward ◽  
J. Staun Olsen

The pressure-induced phase transition sequence in the title compound, potassium sodium fluoromanganate, has been investigated by single-crystal X-ray diffraction using synchrotron radiation and a diamond anvil pressure cell. Na^+ ions at 4% of the K^+ sites shift the ferrodistortive phase transition to the lower pressure P_{c1} of 2.75 (5) GPa compared to 3.12 GPa in the parent compound KMnF3. The transition is illustrated by the critical behaviour of the unit-cell dimensions, the pressure-dependent evolution of the MnF_6 ^- octahedral rotation and related macroscopic spontaneous strain. As far as precision of the present experiment allows, the observations show that the 4% of Na^+ admixture at the K^+ sites does not substantially change the nature of the transition at P_{c1}. The main effect of pressure is to stabilize the tetragonal phase II. The expected further evolution of the MnF_6 ^- octahedral tiltings, leading to the orthorhombic and monoclinic phases, has not been observed up to 8.33 GPa.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1055
Author(s):  
Dariia Simonova ◽  
Elena Bykova ◽  
Maxim Bykov ◽  
Takaaki Kawazoe ◽  
Arkadiy Simonov ◽  
...  

A structure and equation of the state of δ-AlOOH has been studied at room temperature, up to 29.35 GPa, by means of single crystal X-ray diffraction in a diamond anvil cell using synchrotron radiation. Above ~10 GPa, we observed a phase transition with symmetry changes from P21nm to Pnnm. Pressure-volume data were fitted with the second order Birch-Murnaghan equation of state and showed that, at the phase transition, the bulk modulus (K0) of the calculated wrt 0 pressure increases from 142(5) to 216(5) GPa.


1989 ◽  
Vol 22 (1) ◽  
pp. 61-63 ◽  
Author(s):  
J. S. Olsen ◽  
L. Gerward ◽  
U. Benedict ◽  
H. Luo ◽  
O. Vogt

High-pressure X-ray diffraction studies have been performed on ThP using synchrotron radiation and a diamond-anvil cell. The bulk modulus B 0 and its pressure derivative B′0 have been determined (B 0 = 137 GPa; B′0 = 5.1). A phase transition from the NaCl structure to the CsCl structure was observed at about 30 GPa.


2014 ◽  
Vol 78 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Kei Hirose

AbstractUltrahigh-pressure and -temperature (P-T) experimental techniques have progressed rapidly in recent years. By combining them with X-ray diffraction measurements at synchrotron radiation facilities, it is now possible to examine deep Earth mineralogy in situ at relevant high P-T conditions in a laser-heated diamond anvil cell (DAC). The lowermost part of the mantle, known as the D″ layer, has long been enigmatic because of a number of unexplained seismological features. Nevertheless, the discovery of a phase transition from MgSiO3 perovskite to ‘post-perovskite’ above 120 GPa and 2400 K indicates that post-perovskite is a principal constituent in the lowermost mantle, which is compatible with seismic observations. The ultrahigh P-T conditions of the Earth’s core have not been accessible by static experiments, but the structure and phase transition of Fe and Fe-alloys are now being examined up to 400 GPa and 6000 K by laser-heated DAC studies.


2006 ◽  
Vol 110 (2) ◽  
pp. 761-771 ◽  
Author(s):  
Marek J. Potrzebowski ◽  
Grzegorz D. Bujacz ◽  
Anna Bujacz ◽  
Sebastian Olejniczak ◽  
Paweł Napora ◽  
...  

1991 ◽  
Vol 231 ◽  
Author(s):  
Y. Fujii ◽  
Y. Ohishi ◽  
H. Konishi ◽  
N. Nakayama ◽  
T. Shinjo

AbstractThis paper has made an overview on elastic and structural aspects of three distinct superlattices under hydrostatic pressure up to about 8GPa, which were studied by our unique x-ray diffraction technique incorporated with a diamond-anvil cell. They are metallic fcc/fcc Au/Ni, bcc/fcc Mo/Ni, and semiconductive epitaxially-grown PbSe/SnSe superlattices. In their layer-stacking direction, both metallic superlattices show the supermodulus behavior while the semiconductive one doesn't. However, its pressure-driven cubic-to-orthorhombic phase transition, successively taking place in the SnSe and PbSe layers, has been found to significantly shift by stress due to its epitaxial growth.


1998 ◽  
Vol 524 ◽  
Author(s):  
K. A. Steiner ◽  
W. T. Petuskey

ABSTRACTHigh pressure synchrotron x-ray diffraction experiments were conducted on KCa2Nb3O10, to determine lattice constants as a function of pressure. A diamond anvil cell was used to produce pressures up to 66 GPa. A phase transition occurred at 13.5 GPa. From the lattice constants, linear compressibilities of 8.55 × 10-4 GPa-1 in the a direction, -9.40 × 10-4 GPa-1 in the b direction, and 142 × 10-4 GPa-1 in the c direction, and a bulk modulus of 68.5 GPa were found for the lower pressure orthorhombic phase.


Sign in / Sign up

Export Citation Format

Share Document