The occurrence of niobian zirconolite, pyrochlore and baddeleyite in the Kovdor carbonatite complex, Kola Peninsula, Russia

1996 ◽  
Vol 60 (401) ◽  
pp. 639-646 ◽  
Author(s):  
C. Terry Williams

AbstractThe compositions and textural relationships of the oxide minerals zirconolite, pyrochlore and baddeleyite are described. These occur as accessory minerals, often intergrown with each other, from a phoscorite rock associated with the Kovdor carbonatite complex. Both the zirconolite and baddeleyite have relatively high concentrations of Nb and Ta; the pyrochlore is rich in U and Ta. Backscattered electron images, coupled with detailed microprobe analyses, reveal complex compositional zoning in zirconolite and pyrochlore which reflect changes in the fluid composition during growth of these minerals. A comparison is made of incompatible element ratios Zr/Hf, Nb/Ta and Th/U between the three accessory minerals.

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 355
Author(s):  
Maria Rampilova ◽  
Anna Doroshkevich ◽  
Shrinivas Viladkar ◽  
Elizaveta Zubakova

The main mass of the Sevathur carbonatite complex (Tamil Nadu, India) consists of dolomite carbonatite with a small number of ankerite carbonatite dikes. Calcite carbonatite occurs in a very minor amount as thin veins within the dolomite carbonatite. The age (207Pb/204Pb) of the Sevathur carbonatites is 801 ± 11 Ma, they are emplaced within the Precambrian granulite terrains along NE–SW trending fault systems. Minor minerals in dolomite carbonatite are fluorapatite, phlogopite (with a kinoshitalite component), amphibole and magnetite. Pyrochlore (rich in UO2), monazite-Ce, and barite are accessory minerals. Dolomite carbonatite at the Sevathur complex contains norsethite, calcioburbankite, and benstonite as inclusions in primary calcite and are interpreted as primary minerals. They are indicative of Na, Sr, Mg, Ba, and LREE enrichment in their parental carbonatitic magma. Norsethite, calcioburbankite, and benstonite have not been previously known at Sevathur. The hydrothermal processes at the Sevathur carbonatites lead to alteration of pyrochlore into hydropyrochlore, and Ba-enrichment. Also, it leads to formation of monazite-(Ce) and barite-II.


2000 ◽  
Vol 6 (S2) ◽  
pp. 428-429
Author(s):  
J. S. Lowther ◽  
K. A. Brunstad

Oxides of iron, titanium, and iron & titanium occur as accessory mineral components of most igneous rocks and generally comprise 1-2% of the total rock volume. In the fine-grained rocks the crystals are usually equidimensional and less than 1 mm across. Because most of them are opaque they cannot be examined using polarized transmitted light in the standard petrographic microscope and must be identified by reflected light (1). We have chosen to study these minerals in the SEM using BSE imaging and EDS microanalysis of carbon-coated polished sections of the rocks which contain them. Alhough this does not permit precise identification of the minerals the technique does reveal textural details which cannot be seen with light microscopy and also allows chemical analysis of the grains or parts of the grains. Furthermore, all these the oxide minerals are very easy to see in the BSE images because they are a higher atomic number (Z) than the silicates that form the bulk of the rock.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 580
Author(s):  
Gonçalves ◽  
Melgarejo ◽  
Alfonso ◽  
Amores ◽  
Paniagua ◽  
...  

The Giraúl granitic pegmatite field in Angola is composed of five pegmatite types, the most evolved belong to the beryl-columbite, beryl-columbite-phosphate and spodumene types. Pegmatites are concentrically zoned with increased grain size toward a quartz core; the most evolved pegmatites have well-developed replacement units. These pegmatites are rich in Nb-Ta oxide minerals and the field has a moderate interest for critical elements such as Ta and Hf. Tourmaline, garnet and micas occur as accessory minerals. The abundance of Zr and Nb-Ta minerals increases with the evolution of the pegmatites, as well as the proportions of beryl and Li-rich minerals. The Ta/(Ta + Nb) ratio in Nb-Ta oxide minerals and the Hf/(Hf + Zr) ratio in zircon also increase with the evolution of the pegmatites and within each pegmatite body from border to inner zones, and especially in the late veins and subsolidus replacements. Textural patterns and occurrence of late veins with Ta-rich minerals suggest that Nb and especially Ta can be enriched in late hydrothermal fluids exsolved from the magma, along with Hf and other incompatible elements as Sn, U, Pb, Sb and Bi.


2020 ◽  
Vol 105 (12) ◽  
pp. 1875-1888
Author(s):  
Erin E. Adlakha ◽  
Keiko Hattori ◽  
Mitchell J. Kerr ◽  
Brandon M. Boucher

Abstract Titanium oxide minerals along the P2 fault in the eastern Athabasca Basin are characterized to constrain their origin and the geological history of the area. Two types of rutile are recognized in the basement rocks. Early rutile is disseminated in graphitic metapelite and quartzite, and it formed during regional metamorphism and post-metamorphic hydrothermal activity. Late rutile occurs as a needle-like alteration product of mica and likely formed during retrogression of the basement. In graphitic metapelite, early rutile commonly occurs with an assemblage of oxy-dravite, quartz, graphite, zircon, pyrite, biotite, and muscovite. In quartzite, rutile occurs with quartz, sillimanite, muscovite, and zircon. Metamorphic rutile is characterized by high Nb/Ta ratios (up to 47) with high concentrations of U (up to 126 ppm) and V4+ (up to 1.44 wt%; V valance calculated from EPMA data). Hydrothermal rutile contains distinctly low Nb/Ta (as low as 4.80) with high Ta (≤3050 ppm), and relatively low V (as V 3+; as low as 0.02 wt%) and U (as low as 9.06 ppm), reflecting fluids in reduced oxidation conditions. Anatase forms small anhedral (rarely coarse and euhedral) grains in the basal sandstones and altered basement rocks. In sandstones, anatase occurs with the late diagenetic mineral assemblage, whereas in basement rocks it commonly occurs with the clay-sized minerals related to uranium mineralization. In both rocks, anatase likely formed through the dissolution of rutile and/or other Ti-bearing minerals. Anatase is characterized by variably high Fe (up to 0.99 wt%; possibly contributed by hematite micro-or nanoinclusions) and U (up to 180 ppm). The mineral assemblages and composition of anatase suggest its protracted crystallization from relatively low temperature, oxidizing, acidic, uraniferous fluids of the sandstones during late diagenesis and hydrothermal activity. Therefore, the occurrence of anatase records the incursion of basin fluids into the basement, and the interaction of basement rocks with fluids responsible for the formation of the McArthur River uranium deposit. The results of this study confirm that Ti-oxides are useful in unraveling the geological history of an area that underwent prolonged hydrothermal activity.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 442 ◽  
Author(s):  
Frances Chikanda ◽  
Tsubasa Otake ◽  
Yoko Ohtomo ◽  
Akane Ito ◽  
Takaomi D. Yokoyama ◽  
...  

Carbonatites undergo various magmatic-hydrothermal processes during their evolution that are important for the enrichment of rare earth elements (REE). This geochemical, petrographic, and multi-isotope study on the Kangankunde carbonatite, the largest light REE resource in the Chilwa Alkaline Province in Malawi, clarifies the critical stages of REE mineralization in this deposit. The δ56Fe values of most of the carbonatite lies within the magmatic field despite variations in the proportions of monazite, ankerite, and ferroan dolomite. Exsolution of a hydrothermal fluid from the carbonatite melts is evident based on the higher δ56Fe of the fenites, as well as the textural and compositional zoning in monazite. Field and petrographic observations, combined with geochemical data (REE patterns, and Fe, C, and O isotopes), suggest that the key stage of REE mineralization in the Kangankunde carbonatite was the late magmatic stage with an influence of carbothermal fluids i.e. magmatic–hydrothermal stage, when large (~200 µm), well-developed monazite crystals grew. The C and O isotope compositions of the carbonatite suggest a post-magmatic alteration by hydrothermal fluids, probably after the main REE mineralization stage, as the alteration occurs throughout the carbonatite but particularly in the dark carbonatites.


LITOSFERA ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 652-667
Author(s):  
A. B. Nemov

Research subject. This paper presents original findings about textural-structural, mineralogical, petrological, and geochemical features of the garnet-amphibole miaskites (firstes) of the Ilmenogorsky miaskite massif.Materials and methods. The microprobe analysis of mineral composition was performed using Tescan Vega3 sbu and REMMA202M scanning microscopes equipped with microanalyzers. The content of major, trace and rareearth elements (REE) in rock samples was determined by the methods of AAS and ICP-MS.Results. The garnet-amphibole miaskites under study are characterized by a rare mineral paragenesis, i.e. garnet-amphibole-pyroxene-nepheline-plagioclase. The mafic minerals exhibit a high ferruginosity (f = 70–99), while the accessory minerals have high Al, F and low REE contents. The garnetamphibole miaskites contains high concentrations of Al, Fe3+, Ca, Na, Be, Rb, Mo, Tl and low concentrations of LILE, HFSE, REE and transit elements.Conclusions. According to the garnet composition and its ferruginosity (f = 95– 99), high contents of Al and F in accessory minerals, the prevalence of Fe3+, as well as negative Eu/Eu* and positive Ce/ Ce* anomalies, the garnet-amphibole miaskites under study are assumed to be the product of acid-alkaline metasomatism occurring under the oxidizing conditions of petrogenesis. The low ratios of Cr/V and Ni/Co indicate the immobility of transit elements during metasomatism, and their clarke of concentration corresponds to the content in metaterrigenous and metacarbonate rocks, which suggests crustal substratum for garnet–amphibole miaskites. Garnet-amphibole miaskites are the markers of the interaction of crustal material with deep fluids, which occurred during the stage of shear tectonics development (270–240 Ma) due to the broad permeability of the rocks composing the Ilmenogorsky miaskite massif.


1980 ◽  
Vol 43 (332) ◽  
pp. 959-966 ◽  
Author(s):  
G. A. Desborough ◽  
S. D. Ludington ◽  
W. N. Sharp

SummaryThe Precambrian Redskin stock is a high-silica alkalic granite that forms a late pluton related to the 1000 Ma-old Pikes Peak batholith. Zircon, fluorite, fluocerite, ilmenorutile, columbite, biotite, magnetite, and hematite are the most abundant accessory minerals. Thorite, monazite, and xenotime are sparse, and cassiterite and topaz very rare. The principal residences of Sn, Nb, and Ta are ilmenorutile and columbite. The occurrence of cassiterite intergrown with biotite and columbite and the high contents of Nb and Ta in cassiterite are evidence that cassiterite is also a primary mineral. The high concentrations of certain trace elements indicate a high degree of fractionation of magma prior to emplacement of the Redskin Granite. An extremely low crystallization temperature for the granite is indicated by the compositions of albite and K-feldspars, the presence of Fe-rich dioctahedral mica, the absence of Ti in magnetite, and the low content of Ti in biotite. This low crystallization temperature seems due largely to the high concentrations of F, Rb, and other volatile elements in the magma.


2013 ◽  
Vol 50 (1) ◽  
pp. 78-93 ◽  
Author(s):  
John D. Greenough ◽  
Avee Ya’acoby

Geochemical data, from the Mars Meteorite Compendium web site, for 13 basaltic meteorites, possibly from only four localities on Mars, are used to study Martian petrogenetic processes. To achieve this goal, an exploratory data analysis technique, multidimensional scaling (MDS), is used to quantitatively assess the relative behavior (measured with correlation coefficients) of 160 incompatible element ratios involving 25 “trace” elements. The ratios behave as in Earth basalts, suggesting that relative element incompatibility is similar in both planets. Because mineralogy controls incompatibility, the mineralogy of Earth and Mars mantles appears similar. In addition, results suggest that ratios involving elements with highly different incompatibility (e.g., La/Yb) are dominantly controlled by % melting. Plots of SiO2 (pressure proxy; decreases with increasing pressure) versus La/Yb and Nb/Y (decrease as melting increases) imply that Mars basalts, like Earth tholeiites, reflect high percentages of melting, but opposite to Earth, % melting appears to increase with increasing pressure. The moderately correlated, positive, SiO2–La/Yb Mars relationship parallels highly correlated Lunar KREEP data and contrasts with Earth’s negative correlation. The positive relationships may reflect restricted mantle convection in some (Mars and the Moon are smaller) planetary bodies. Using similarly incompatible element ratios that are sensitive to source composition, to compare Mars and Earth with MDS, Mars sources most resemble depleted Earth mantle. Additionally, these ratios group Mars sources into enriched, depleted, and intermediate types. The groupings are the same as those suggested by isotopes, and we conclude that trace element data support the hypothesis that chemical variation in Mars may reflect crystallization of a Mars magma ocean. The natural patterns in ratios and samples revealed using MDS, which has no a priori information about relationships, support integrity of the geochemical data set, despite potential shortcomings such as small sample sizes, alteration, and weathering. However, whether the meteorites are representative of Mars as a whole is unknown.


Sign in / Sign up

Export Citation Format

Share Document