scholarly journals The Occurrence of Selected Radionuclides and Rare Earth Elements in Waste at the Mine Heap from the Polish Mining Group

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 504
Author(s):  
Danuta Smołka-Danielowska ◽  
Agata Walencik-Łata

The paper presents the results of research on rare earth elements (REY) and selected radionuclides in barren rocks deposited on a heap at a mine belonging to the Polish Mining Group (the largest producer of hard coal in EU countries). The maximum concentration of REEs determined in silstones was 261.6 mg/kg and in sandstones 221.2 mg/kg. The average uranium and thorium content in silstones was 6.8 mg/kg and 11.6 mg/kg, respectively. On the other hand, the samples of burnt coal shales contain on average 3.5 mg/kg of uranium and 9.7 mg/kg of thorium. In all coal waste samples, the REE values are higher than in hard coal (15.7 mg/kg). Carriers of REY, uranium, and thorium in coal waste are detritic minerals: monazite and xenotime, which are part of the grain skeleton of barren rocks. Coal waste samples are characterized by a variable distribution of REY concentrations as well as a variable content of radionuclides. The 226Ra, 228Ra, and 40K measurements in the investigated samples were performed using the gamma spectrometry technique. The concentrations of the analyzed isotopes differed depending on the mineralogical composition of the investigated samples. The present study results may be important in determining the possibility of utilization of wastes of barren rocks stored in the mine heap and in assessing environmental and radiological hazards.

Clay Minerals ◽  
1979 ◽  
Vol 14 (3) ◽  
pp. 229-240 ◽  
Author(s):  
Elen Roaldset

AbstractThe distribution of rare earth elements (REE) in two different sediments, a marine clay and a till, was found to be dependent both on grain size and mineralogical composition. In the marine clay the REE content was highest in the coarsest fraction; in the till REE were markedly enriched in the finest fraction. Detrital and authigenic origins for different size fractions have been attributed on the basis of REE contents.


2020 ◽  
Author(s):  
Alvar Soesoo ◽  
Kalle Kirsimäe

<p>Global phosphate demand is rising due to growing population and associated food demand. World consumption of P<sub>2</sub>O<sub>5</sub> is forecasted to increase to 46 million tonnes in 2020. Phosphate deposits and occurrences are widely distributed in Europe. However, very little phosphorus is produced in the EU to satisfy the growing demand for fertilizers. As a consequence, the European countries are net importers of phosphate, with an average of 4 M tonnes of natural phosphate-rich material imported per year. The European Commission has listed phosphates among critical raw materials with a significant supply risk. Other elements pertaining to this list can also be recovered from the phosphate deposits, as the rare earth elements (REE) and fluorspar (Goodenough et al., 2016). Estonia holds, the largest in Europe, unused sedimentary phosphate rock reserves, about 3 Billion metric tons (ca 819 Million metric tons of P<sub>2</sub>O<sub>5</sub>; Bauert & Soesoo, 2015). The Estonian shelly phosphate rocks are friable or weakly cemented bioclastic quartz sandstones deposited in shallow marine shoreface environment with a variable content of phosphatic brachiopod shells detritus. These sediments formed approximately 488 million years ago. The content of fossil shells ranges from 5–10% to 80–90 vol%. Brachiopod shells and enriched detritus contain up to 35–37% P<sub>2</sub>O<sub>5</sub>. Recent studies have revealed relatively enriched but variable content of REEs in these phosphate shells. For example, La in single shells ranges 50 to 550 ppm, Ce – 40–1200 ppm, Pr - 4–170 ppm, Nd – 20–800 ppm, Sm – 3–180 ppm, Gd – 4–135 ppm. The total REEs can reach 3000 ppm, however, in average they are ranging between 1000 and 2000 ppm.  At the moment the Estonian phosphorites cannot regarded as an economic REE source, but considering REEs as a co-product of phosphorous production, it may economically be feasible. Large variability in REE concentrations results probably from post-depositional diagenetic processes but its geological controls need further study. Although the raw ore enrichment (separating shells from sandstone) and phosphorous extraction are technologically easy, the technology for REE extraction in parallel with the phosphorous acid production needs further developments. Relying on the vast phosphorite reserves in Estonia, the critical nature of both the phosphorus and REEs for the European economy and security, it may be a worthwhile opportunity to develop these resources into production at the European scale. </p><p><strong>REFERENCES</strong></p><ol><li>Goodenough, J. Schilling, E. Jonsson, P. Kalvig, N. Charle, F. Tuduri, E. Deady, M. Sadeghi, H. Schiellerup, A. Müller, B. Bertrand, N. Arvanitidis, D. Eliopoulos, R. Shaw, K. Thrane, N. Keulen. Europe's rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geology Reviews, 72, 838-856 (2016).</li> <li>Bauert, A. Soesoo. Shelly phosphate rocks of Estonia, in Strategic raw materials of Estonia, Rakvere Conference, Rakvere, Estonia, (2015).</li> </ol>


2021 ◽  
Vol 22 (7) ◽  
pp. 312-317
Author(s):  
Dmytro Yelatontsev ◽  
◽  
Anatoly Mukhachev ◽  

The experimental-industrial study results of the process of sorption of rare-earth elements on sulfonic cation-exchange resin KU-2-8 from nitrate solutions of loparite concentrate development are presented. Values of different obtained elements are discussed. Different changes in processes are described. Reprocessing loparine raw materials in the close cycle without hydrochloric and sulfuric acid, and excess of normative sodium content in productional concentrate is possible. Keywords: ionite, sorption, loparite concentrate, rare-earth element, thorium.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 484
Author(s):  
Zongliang Zhang ◽  
Landon Allen ◽  
Prasenjit Podder ◽  
Michael L. Free ◽  
Prashant K. Sarswat

Rare earth elements (REEs) are of great importance to modern society and their reliable supply is a major concern of many industries that utilize them in metal alloys, semiconductors, electrical equipment, and defense equipment. REEs in the coal waste have been revealed to be an alternative resource for REEs production. In this study, the extraction, recovery, and upgrading of the REEs from coal waste has been realized with the bioleaching and precipitation processes. Reliable and sustainable acid and oxidant production from the oxidation of the pyrite with Acidithiobacillus ferrooxidans to generate acid for leaching were realized in this research. The acidified bioleaching solution was used to extract REEs from coal waste, with 13–14% yields for most REE elements (~72 h of leaching). However, recovery for longer duration tests was significant higher (varies from 40–60% for individual REEs). After extraction, precipitation and separation processes were designed with the aid of Visual Minteq calculations and modeling to concentrate the REEs. With the procedures designed in this research, a final REEs precipitate product containing 36.7% REEs was produced.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Ingrid ZNAMENÁČKOVÁ ◽  
Silvia DOLINSKÁ ◽  
Slavomír HREDZÁK ◽  
Vladimír ČABLÍK ◽  
Michal LOVÁS ◽  
...  

Rare earth elements (REEs) extraction from wastes and/or by-products is alternative possibility of their winning. The occurrence ofREEs, namely 50.1 ppm of La, 100.1 ppm of Ce and 44.3 ppm of Nd was confirmed in solid fly ash samples from the coal fired heatingplant (TEKO, Inc. Košice, eastern Slovakia). The submitted contribution presents laboratory results of REEs leaching from coal fly ashusing 3M HCl, HNO3, H2SO4 and H3PO4 at 80°C during 120 min.It was found, that recoveries 65.5% of La, 64.4% Ce and 64.3% of Nd into liquor may be attained after grain size reduction to below5 μm.


2020 ◽  
Vol 28 (4) ◽  
pp. 240-246
Author(s):  
Rafał Baron

AbstractThe aim of the article is to present the results of laboratory analyses determining the content of rare earth elements (REE) in hard coal type 31.1. Coal was extracted directly from the mining excavation located in the Upper Silesian Coal Basin. Mass spectrometry tests with ionization in inductively coupled plasma (ICP-MS), were aimed at the quantitative analysis of the share of REE in coal, taking into account the economic aspects of recovery of these elements. Fine ground hard coal samples and ashes obtained after coal burning were assessed for the rare earth elements concentration. Results of the rare earth elements concentration (lanthanum and cerium) in hard coal are similar in the values obtained in previous tests. The current analyses present higher concentration of europium or neodymium. The article also contains the concept of possible future research work, consisting in the recovery of rare earth elements using, among others, a classifying hydrocyclone.


2017 ◽  
Vol 62 (3) ◽  
pp. 495-507
Author(s):  
Jacek Nowak ◽  
Magdalena Kokowska-Pawłowska

AbstractCoal waste is formed during coal mining and processing operations. That waste comprises mainly sedimentary rocks that occur in roofs and floors of underground workings and in partings in coal seams. It contains numerous trace elements, including rare earth elements (REEs). Hypergenic processes that take place in coal waste piles may lead to endogenous fires. Thermal transformations of waste have an effect on changes in its phase and chemical composition, including the concentration of trace elements.The paper presents changes in the content of selected rare earth elements (Sc, Y, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu) in wastes of varying degree of thermal transformation. The results of REE content determination in lump samples were subjected to statistical analysis and coefficients of correlation between the studied rare earth elements and the main chemical constituents were determined.The primary carriers of REEs in coal waste are clay minerals. Phase transformations that take place at high temperatures (including dehydroxylation of clay minerals and formation of minerals characteristic of contact metamorphism) cause changes in the concentration of rare earth elements.


Sign in / Sign up

Export Citation Format

Share Document