scholarly journals The Disappearance of Coal Seams Recorded in Associated Gangue Rocks in the SW Part of the Upper Silesian Coal Basin, Poland

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 735
Author(s):  
Justyna Ciesielczuk ◽  
Monika J. Fabiańska ◽  
Magdalena Misz-Kennan ◽  
Dominik Jura ◽  
Paweł Filipiak ◽  
...  

Coal seams in the Upper Silesian Coal Basin vanish within the Carboniferous Upper Silesian Sandstone Series and below an unconformity marking the Carboniferous top surface. Changes in the geochemical, mineralogical, petrological and palynological characteristics of gangue rocks associated with the vanished seams record what happened. The observed changes could have been caused by (1) coal-seam paleofire, (2) peat combustion, (3) igneous intrusion, (4) metasomatism and/or (5) weathering. Multifaceted research on samples collected at the Jas-Mos mining area, a part of the operating Jastrzębie-Bzie Coal Mine that are representative of different geological settings in the northern and southern parts of the mining area, point to intra-deposit paleofire as the most plausible reason for the disappearance. Biomarkers enabled recognition of differences in heating duration and oxygen access. Coal seams in the south burned quickly with abundant oxygen supply. Seams in the north pyrolyzed for an extended time under conditions of limited oxygen. Though other methods used proved less sensitive, all confirmed low (100–150 °C) paleotemperature heating. Overall, the reason for the local disappearance of the coal seams, making their exploitation difficult and unprofitable, can be assigned to a variety of different processes in a complex overlapping history of variable weathering, heating due to local endogenic fires and, probably, earlier peat combustion.

Clay Minerals ◽  
1992 ◽  
Vol 27 (3) ◽  
pp. 269-282 ◽  
Author(s):  
Z. Weiss ◽  
A. Baronnet ◽  
M. Chmielova

AbstractIn the Czechoslovak part of the Upper Silesian Coal Basin (Ostrava-Karvina Coal Basin), only part of the Upper Carboniferous (Namurian A, B, C and Westphalian A) is well developed, and tonsteins, which are clayey rocks or claystones, occur as thin, clayey interlayers in the coal seams. Two types of primary volcanic mineral assemblages were identified in four tonstein samples from different coal seams; the first type is characterized by the presence of biotite and sanidine, and the second by the presence of biotite, bytownite and Ca-amphibole. All tonsteins studied contained kaolinite minerals, volcanic quartz grains, crystals of zircon and apatite. Separated biotite flakes with an admixture of kaolinite layers were identified as 1M polytype. The flakes without kaolinite minerals were identified as epitactic overgrowth of 1M and complex polytypes, and twinned crystals of 2M1 polytype. Kaolinization of biotite flakes was observed in all tonstein samples studied. Kaolinite single layers (7 Å) as well as two-layer polytype of kaolinite minerals (14 Å) sandwiched between biotite layers (10 Å) were identified by HRTEM imaging.


2021 ◽  
Vol 80 (22) ◽  
Author(s):  
Marcin Dreger ◽  
Sławomir Kędzior

AbstractThe paper presents the variability of hard coal output, methane content and methane emissions into coal workings and into the atmosphere from the two most methane-gassy coal mines in Poland. The Budryk mine is one of the youngest mines in Poland, but it is the most methane-gassy as well. In 2016, the total CH4 emissions exceed 140 million of m3. This large increase in methane emissions to mine workings is primarily related to the increase in the depth of coal extraction (up to 1290 m) and, consequently, the rapid increase in the methane content in coal seams (up to 10–12 m3/Mg coaldaf). On the other hand, in the Pniówek mine, methane emission was the highest at the beginning of the study period (1986–1991). During the following years, emission decreased to the values of less than 140 million of m3, which were still one of the largest amounts of emitted methane in the entire Upper Silesian Coal Basin. The coexistence of natural factors, such as the geological structure and gas distribution, as well as mining-related factors, i.e. the depth of mining, the intensity of coal extraction determines the temporal variability of methane emissions in the studied mines.


2009 ◽  
Vol 77 (1-2) ◽  
pp. 175-187 ◽  
Author(s):  
Frank van Bergen ◽  
Pawel Krzystolik ◽  
Niels van Wageningen ◽  
Henk Pagnier ◽  
Bartlomiej Jura ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 109
Author(s):  
Marzena Lamparska ◽  
Mirosław Danch

The current study documents the importance of research on preserved artifacts which were previously used to take measurements of the Earth, and their importance for cultural heritage. The article reviewed the available source documents presenting the history of the astrogeodetic control point of Sucha Góra-Trockenberg as a monument of the first order triangulation network, preserved in cartographic materials and as the starting point of local geodetic networks, used in mining until 2000 in the so-called Upper Silesian Coal Basin, located in the territory of Poland and the Czech Republic. In order to determine the history of the triangulation work and the dates that the geographic coordinates of the peak were determined, field journals and other available materials were analyzed. The interesting location of this astrogeodetic control point, being in the vicinity of a UNESCO site, as well as its location in a forest and park complex, justify undertaking activities related to the conservation and promotion of this cultural heritage site.


2016 ◽  
Vol 32 (3) ◽  
pp. 39-66
Author(s):  
Magdalena Kokowska-Pawłowska

AbstractIn this paper results of investigation on the variability of REE contents in the clayey rocks accompanying selected coal seams from Zaleskie and Ruda beds of western part of Upper Silesia Coal Basin (USCB) have been presented. 75 samples have been analysed from the claystones coexisting with coal seams 405 and 408 collected from the USCB area. Contents of selected REE have been assessed with a use of the Instrumental Neutron Activation Analysis (INAA). In regard to the constraints of this method following elements underwent evaluation: scandium (Sc), lanthanum (La), cerium (Ce), neodymium (Nd), samarium (Sm), Europium (Eu), terbium (Tb), ytterbium (Yb), and lutetium (Lu). Contents of yttrium (Y) was determined with a use of the Fusion-Inductively-Coupled Plasma (FUSICP) method.In all featured groups of claystone (claystone, sandy claystone and siderite claystone) the highest, although diverse content of SiO2, Al2O3, Fe2O3and K2O were observed. Whatever the petrographic character of the claystone rocks, among the analyzed rare earth elements, the highest participation of Ce, La, Y, Nd and Sc were found. Other analyzed REE showed significantly lower content. Some regional diversity of REE in the area of study was also observed. In the south-western part of the USCB, higher participation showed: Y, Sm and Nd, while in the north-western part: Sc. To determine the dependence between content of rare earth elements and chemical composition, the correlation-coefficients were calculated. In the calculations ratio SiO2/Al2O3and increased content of P2O5, ignition loss and Fe2O3were taken into account. Most of the elements analyzed in group of rocks distinguished by increased content of P2O5and ignition loss, showed high positive correlation with chemical composition. In almost all groups of rocks negative correlation with MnO, loss on ignition and sometimes with CaO was found. Rocks represented by siderite claystone are characterized by the highest values of correlation coefficients of rare earth elements with Fe2O3.


2017 ◽  
Vol 62 (4) ◽  
pp. 843-856 ◽  
Author(s):  
Krzysztof Wierzchowski ◽  
Jarosław Chećko ◽  
Ireneusz Pyka

Abstract The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called “documentary seam samples”, which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.


Author(s):  
E.S. Ponomarenko ◽  

The year 1921 marks the beginning of a systematic study of the north of the Urals, which was initiated by the research of the Upper Pechora Geological Team under the leadership of A.A. Chernov, conducted in the Ilych River basin. The research of this territory continues to this day, the author of this paper gives a retrospective analysis of some of A.A. Chernov conclusions in his preliminary report of 1922. The history and some results of the study of Paleozoic reef for-mations are discussed. They are widely distributed in the Ilych River basin and poorly subjected to secondary transfor-mations. A.A. Chernov, in his report, described the bright prospects of the graphite discovered during research. However, upon further investigation, Ilych graphite turned out to be a “beautiful fairy tale” and, after the discovery of the Pe-chora coal basin, it was forgotten. The history of the study and repeated attempts to explore and extract lead ores in the Shantym-Priluk tract, which lasted almost until the 1960s of the XX century, is considered.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2153 ◽  
Author(s):  
Jarosław Chećko ◽  
Tomasz Urych ◽  
Małgorzata Magdziarczyk ◽  
Adam Smoliński

The paper presents the assessment of the resources of methane considered as the main mineral in the most prospective selected areas of the Upper Silesian Coal Basin, Poland in the region of undeveloped deposits. The methane resources were estimated by means of a volumetric method at three depth levels, 1000, 1250, and 1500 m. A part of the Studzienice deposit comprising three coal seams, 333, 336, and 337, located in a methane zone was chosen for the numerical modeling of simulated methane production. The presented static 3D model has been developed using Petrel Schlumberger software. The total resources of methane in the area amount to approximately 446.5 million of Nm3. Numerical simulations of methane production from the selected coal seams with hydraulic fracturing were conducted by means of Schlumberger ECLIPSE reservoir simulator. Based on the simulations, it was concluded that, in the first six months of the simulations, water is produced from the seams, which is connected with the decrease in the rock mass pressure. The process prompts methane desorption from the coal matrix, which in turn results in a total methane production of 76.2 million of Nm3 within the five-year period of the simulations, which constitutes about 17% of total methane resources (GIP). The paper also presents a detailed analysis of Polish legislation concerning the activities aimed at prospecting, exploring, and extracting the deposits of hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document