scholarly journals Geochemical Occurrence of Rare Earth Elements in Mining Waste and Mine Water: A Review

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 860
Author(s):  
Konstantina Pyrgaki ◽  
Vasiliki Gemeni ◽  
Christos Karkalis ◽  
Nikolaos Koukouzas ◽  
Petros Koutsovitis ◽  
...  

Μining waste, processing by-products and mine water discharges pose a serious threat to the environment as in many cases they contain high concentrations of toxic substances. However, they may also be valuable resources. The main target of the current review is the comparative study of the occurrence of rare earth elements (REE) in mining waste and mine water discharges produced from the exploitation of coal, bauxite, phosphate rock and other ore deposits. Coal combustion ashes, bauxite residue and phosphogypsum present high percentages of critical REEs (up to 41% of the total REE content) with ΣREY content ranging from 77 to 1957.7 ppm. The total REE concentrations in mine discharges from different coal and ore mining areas around the globe are also characterised by a high range of concentrations from 0.25 to 9.8 ppm and from 1.6 to 24.8 ppm, respectively. Acid mine discharges and their associated natural and treatment precipitates seem to be also promising sources of REE if their extraction is coupled with the simultaneous removal of toxic pollutants.

2021 ◽  
Vol 171 ◽  
pp. 105645
Author(s):  
Sandeep Panda ◽  
Rachel Biancalana Costa ◽  
Syed Sikandar Shah ◽  
Srabani Mishra ◽  
Denise Bevilaqua ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 500 ◽  
Author(s):  
Leonid Chaikin ◽  
Andrei Shoppert ◽  
Dmitry Valeev ◽  
Irina Loginova ◽  
Julia Napol’skikh

One of the potential sources of rare-earth elements (REE) is the industrial waste known as red mud (bauxite residue), in which the majority of REE from the initial bauxite are concentrated via the Bayer process. Therefore, the studies of the subject, both in Russia and outside, focus almost exclusively on red mud processing. This article looks into the possibility of REE concentration into red mud by leaching an intermediate product of the bauxite sintering process at Russian alumina refineries, namely electrostatic precipitator (ESP) dust. The experimental works were performed by X-ray diffraction (XRD)and electron probe microanalysis (EPMA) of the sinter and sinter dust. The determination of major and rare-earth elements in the sinter from the rotary kilns and in the ESP dust before and after leaching was carried out by X-ray fluorescence (XRF) and plasma mass spectrometry (ICP-MS). The study showed that it is possible to obtain red mud that contains three times more REE than traditional waste red mud after two-stage leaching ESP dust in the water at 95 °C followed by leaching in an alkaline-aluminate liquor at 240 °C. The shrinking core model was used to study the kinetics of leaching of the original ESP dust and water-treated dust in alkaline-aluminate liquor. The study showed the change in the limiting stage of the alkaline leaching process after water treatment, with the activation energy growing from 24.98 to 33.19 kJ/mol.


2013 ◽  
Vol 448-453 ◽  
pp. 313-316
Author(s):  
Jing Jun Liu ◽  
Hao Yue Xiao ◽  
Ying Liu

The concentrations and fractionation of 14 rare earth elements (REEs) such as La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in filtered water, suspended particles and surface sediments at 10 sampling sites from Gansu, Ningxia and Inner Mongolia sections of the Yellow River of China were studied by HR-ICP-MS. The results demonstrated that the total concentrations of REEs (REEs) in filtered water varied from 0.017 to 0.079 μg/L and had high concentration at S3 (0.079), S1 (0.070) and S4 (0.063) in Inner Mongolia section, while in suspended particles and surface sediments, the ranges were 148.9-246.8 mg/kg (mean 176.4) and 109.9-252.0 mg/kg (mean 179.9), respectively, and showed high concentration at S9 (246.8), S7 (252.0), S8 (229.8) in Baiyin (Gansu section) and S1 (209.5) in Baotou (Inner Mongolia section). The ratios of L/H, δEu and δCe in suspended particles and surface sediments implied light-REEs enrichment in the water compared with the background value of Chinese soil. And the chondrite-normalized REEs patterns of the suspended particles and surface sediments also showed light REEs enrichment at S1, S7, S8 and S9. The high concentrations of REEs in the Yellow River were probably due to the weathering of soil and anthropogenic activities near the river.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4710
Author(s):  
Yunhu Hu ◽  
Mu You ◽  
Guijian Liu ◽  
Zhongbing Dong ◽  
Facun Jiao ◽  
...  

Strategically critical elements are becoming significant for the rising demand of emerging energy-efficient technologies and high-tech applications. These critical elements are mostly geologically dispersed, and mainly recovered from recycled materials. Coal with high concentrations of critical elements is supposed to stable alternative sources. The abundances of critical elements in coal varies widely among different deposits and regions. The high concentrations of critical elements are found in many Chinese and Russian coal ores. The global mining potential ratio (MPR) is applied and suggests scandium, hafnium, cesium, yttrium, germanium, gallium, thallium, strontium and rare-earth elements could be potential recovery from coal. A number of benefits are expected with the extraction of critical elements during coal utilization.


2019 ◽  
Vol 5 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Rodolfo Marin Rivera ◽  
Ghania Ounoughene ◽  
Annelies Malfliet ◽  
Johannes Vind ◽  
Dimitris Panias ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document