scholarly journals Research on Automatic Construction Method of Three-Dimensional Complex Fault Model

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 893
Author(s):  
Chi Zhang ◽  
Xiaolin Hou ◽  
Mao Pan ◽  
Zhaoliang Li

Three-dimensional complex fault modeling is an important research topic in three-dimensional geological structure modeling. The automatic construction of complex fault models has research significance and application value for basic geological theories, as well as engineering fields such as geological engineering, resource exploration, and digital mines. Complex fault structures, especially complex fault networks with multilevel branches, still require a large amount of manual participation in the characterization of fault transfer relationships. This paper proposes an automatic construction method for a three-dimensional complex fault model, including the generation and optimization of fault surfaces, automatic determination of the contact relationship between fault surfaces, and recording of the model. This method realizes the automatic construction of a three-dimensional complex fault model, reduces the manual interaction in model construction, improves the automation of fault model construction, and saves manual modeling time.

2020 ◽  
Vol 29 (4) ◽  
pp. 741-757
Author(s):  
Kateryna Hazdiuk ◽  
◽  
Volodymyr Zhikharevich ◽  
Serhiy Ostapov ◽  
◽  
...  

This paper deals with the issue of model construction of the self-regeneration and self-replication processes using movable cellular automata (MCAs). The rules of cellular automaton (CA) interactions are found according to the concept of equilibrium neighborhood. The method is implemented by establishing these rules between different types of cellular automata (CAs). Several models for two- and three-dimensional cases are described, which depict both stable and unstable structures. As a result, computer models imitating such natural phenomena as self-replication and self-regeneration are obtained and graphically presented.


Author(s):  
Fei Yang ◽  
Chengrong Ma ◽  
Bowen Zhang ◽  
Xuannan Chen ◽  
Li Cao ◽  
...  

2021 ◽  
pp. 91-97
Author(s):  
V. V. Suskin ◽  
A. V. Rastorguev ◽  
I. V. Kapyrin

This article discusses a three-dimensional groundwater flow model of a deep disposal facility at Severny test site. The three-dimensional model is a part of the certified software GEOPOLIS, based on the hydrogeological code GeRa (Geomigration of Radionuclides) serving as the calculation engine. This study describes the hydrogeological patterning of the groundwater flow model, as well as the results of calibration and verification of the model water heads with respect to the data of monitoring for more than 40 years of the deep repository exploitation. The article begins with a brief overview of the previously developed hydrogeological models of this object and continues with a description of the geological structure of the territory, and with a substantiation of the boundaries and parameters of the model. The results of groundwater flow modeling, model calibration, verification and estimation of discrepancy between the model results and monitoring data are shown. The comparison of the modeled and observed water heads in the stationary conditions (before the start of injection) and during operation of the deep repository allows making conclusion on the quality of calibration.


2021 ◽  
Author(s):  
Vladimir Cheverda ◽  
Vadim Lisitsa ◽  
Maksim Protasov ◽  
Galina Reshetova ◽  
Andrey Ledyaev ◽  
...  

Abstract To develop the optimal strategy for developing a hydrocarbon field, one should know in fine detail its geological structure. More and more attention has been paid to cavernous-fractured reservoirs within the carbonate environment in the last decades. This article presents a technology for three-dimensional computing images of such reservoirs using scattered seismic waves. To verify it, we built a particular synthetic model, a digital twin of one of the licensed objects in the north of Eastern Siberia. One distinctive feature of this digital twin is the representation of faults not as some ideal slip surfaces but as three-dimensional geological bodies filled with tectonic breccias. To simulate such breccias and the geometry of these bodies, we performed a series of numerical experiments based on the discrete elements technique. The purpose of these experiments is the simulation of the geomechanical processes of fault formation. For the digital twin constructed, we performed full-scale 3D seismic modeling, which made it possible to conduct fully controlled numerical experiments on the construction of wave images and, on this basis, to propose an optimal seismic data processing graph.


2020 ◽  
Vol 26 (3) ◽  
pp. 170-179
Author(s):  
Takeshi Hori ◽  
Osamu Kurosawa ◽  
Kohei Ishihara ◽  
Taro Mizuta ◽  
Hiroo Iwata

Author(s):  
Ali Merchant ◽  
Robert Haimes

A CAD-centric approach for constructing and managing the blade geometry in turbomachinery aero design systems is presented in this paper. Central to the approach are a flexible CAD-based parametric blade model definition and a set of CAD-neutral interfaces which enable construction and manipulation of the blade solid model directly inside the CAD system’s geometry kernel. A bottleneck of transferring geometry data passively via a file-based method is thus eliminated, and a seamless integration between the CAD system, aero design system, and the larger design environment can be achieved. A single consistent CAD-based blade model is available at all stages of the aero design process, forming the basis for coupling the aero design system to the larger multi-disciplinary design environment. The blade model construction is fully parameterized so that geometry updates can be accurately controlled via parameter changes, and geometric sensitivities of the model can be easily calculated for multidisciplinary interaction and design optimization. A clear separation of the parameters that control the three-dimensional shape of the blade (such as lean and sweep) from the parameters that control the elemental profile shape allows any blade profile family or shape definition to be utilized. The blade model definition, construction interface, and implementation approach are described. Applications illustrating solid model construction, parametric modification and sensitivity calculation, which are key requirements for automated aerodynamic shape design, are presented.


2013 ◽  
Vol 734-737 ◽  
pp. 484-487 ◽  
Author(s):  
Mei Hua Geng ◽  
Xiu Jiang Lv ◽  
Xiao Gang Zhang

The geological structure is an important factor of gas occurrence in coal seam, and the gas occurrence in deep coal seam should be paid attention to enough because the occurrence was more controlled by geological structure and influence. Taken Fengfeng coalfield as target in this paper, the geological structure of this coalfield was described. The deep coal mining district which is monoclinic structure in Fengfeng is located in the east of Gushan anticlinoria, which the junior small anticlines and synclines of the sub-echelon are well developed. And regional fault structures are intensive, the pressure structure is the major structure among this region. The characteristics of geological structure in Fengfeng coalfield were analyzed. The tensional structure planes and pressure structure are the major effect factors, and the latter is the main form of gas occurrence in deep. Some suggestions on safe of deep mining in high gas environment is also put forward, in order to provide theoretical support for the deep coal mining and gas disaster prevention.


2018 ◽  
Vol 243 ◽  
pp. 00021
Author(s):  
Pavel Pisarev ◽  
Aleksandr Anoshkin ◽  
Vladislav Ashihmin

In this research we developed a technique for calculating the stress-strain state of a model construction from a thermoplastic composite material with an embedded piezoactuator. Numerical simulations of the model construction stress-strain state with different arrangement of piezoactuators: upper and middle,-were performed. Numerical simulations were carried out in a three-dimensional setting taking into account the complete technological scheme of laying and anisotropy of the properties of reinforcing layers. The results of numerical experiments revealed the areas of maximum stress. Recommendations for the MFC’s embedding into composite materials were formulated.


Sign in / Sign up

Export Citation Format

Share Document