scholarly journals Effects of Environmental Factors on the Leaching and Immobilization Behavior of Arsenic from Mudstone by Laboratory and In Situ Column Experiments

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1220
Author(s):  
Takahiko Arima ◽  
Ryosuke Sasaki ◽  
Takahiro Yamamoto ◽  
Carlito Baltazar Tabelin ◽  
Shuichi Tamoto ◽  
...  

Hydrothermally altered rocks generated from underground/tunnel projects often produce acidic leachate and release heavy metals and toxic metalloids, such as arsenic (As). The adsorption layer and immobilization methods using natural adsorbents or immobilizer as reasonable countermeasures have been proposed. In this study, two sets of column experiments were conducted, of which one was focused on the laboratory columns and other on the in situ columns, to evaluate the effects of column conditions on leaching of As from excavated rocks and on adsorption or immobilization behavior of As by a river sediment (RS) as a natural adsorbent or immobilizer. A bottom adsorption layer consisting of the RS was constructed under the excavated rock layer or a mixing layer of the excavated rock and river sediment was packed in the column. The results showed that no significant trends in the adsorption and immobilization of As by the RS were observed by comparing laboratory and in situ column experiments because the experimental conditions did not influence significant change in the leachate pH which affects As adsorption or immobilization. However, As leaching concentrations of the in situ experiments were higher than those of the laboratory column experiments. In addition, the lower pH, higher Eh and higher coexisting sulfate ions of the leachate were observed for the in situ columns, compared to the results of the laboratory columns. These results indicate that the leaching concentration of As became higher in the in situ columns, resulting in higher oxidation of sulfide minerals in the rock. This may be due to the differences in conditions, such as temperature and water content, which induce the differences in the rate of oxidation of minerals contained in the rock. On the other hand, since the leachate pH affecting As adsorption or immobilization was not influenced significantly, As adsorption or immobilization effect by the RS were effective for both laboratory and in situ column experiments. These results indicate that both in situ and laboratory column experiments are useful in evaluating leaching and adsorption of As by natural adsorbents, despite the fact that the water content which directly affects the rate of oxidation is sensitive to weathering conditions.

2014 ◽  
Vol 48 ◽  
pp. 168-175 ◽  
Author(s):  
Vladislav Chrastný ◽  
Aleš Vaněk ◽  
Eva Čadková ◽  
Alice Růžičková ◽  
Ivana Galušková ◽  
...  

1991 ◽  
Vol 48 (5) ◽  
pp. 751-756 ◽  
Author(s):  
Bernard Sainte-Marie

The tag–recapture method has been used to measure the field of attraction and the effective fishing area of a baited trap. The possibly conflicting experimental conditions required for the determination of these two parameters are, respectively, that tagged animals do not move and that they behave as undisturbed animals, prior to exposure to bait odour. Field observations and in situ experiments were conducted on the north shore of the Gulf of Saint Lawrence in 1988 and 1989 to compare behaviour of undisturbed and tagged whelks (Buccinum undatum). In the daytime, ~ 75% of undisturbed whelks were quiescent, being either buried and oriented randomly or static and oriented downstream, while the remainder moved across stream at 2–5 cm∙min−1. In contrast, > 97% of tagged whelks oriented in nonrandom directions and moved at equal or greater speeds, on average, 2.2–9.2 m from release points in less than 6 h. Because neither of the two basic conditions was met, tag–recapture experiments would produce biased estimates of baited trap fishing parameters.


2017 ◽  
Vol 80 ◽  
pp. 1-13 ◽  
Author(s):  
Martin A. Dangelmayr ◽  
Paul W. Reimus ◽  
Naomi L. Wasserman ◽  
Jesse J. Punsal ◽  
Raymond H. Johnson ◽  
...  

Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Author(s):  
Kenneth S. Vecchio ◽  
John A. Hunt

In-situ experiments conducted within a transmission electron microscope provide the operator a unique opportunity to directly observe microstructural phenomena, such as phase transformations and dislocation-precipitate interactions, “as they happen”. However, in-situ experiments usually require a tremendous amount of experimental preparation beforehand, as well as, during the actual experiment. In most cases the researcher must operate and control several pieces of equipment simultaneously. For example, in in-situ deformation experiments, the researcher may have to not only operate the TEM, but also control the straining holder and possibly some recording system such as a video tape machine. When it comes to in-situ fatigue deformation, the experiments became even more complicated with having to control numerous loading cycles while following the slow crack growth. In this paper we will describe a new method for conducting in-situ fatigue experiments using a camputer-controlled tensile straining holder.The tensile straining holder used with computer-control system was manufactured by Philips for the Philips 300 series microscopes. It was necessary to modify the specimen stage area of this holder to work in the Philips 400 series microscopes because the distance between the optic axis and holder airlock is different than in the Philips 300 series microscopes. However, the program and interfacing can easily be modified to work with any goniometer type straining holder which uses a penrmanent magnet motor.


1998 ◽  
Vol 37 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Elisa Garvey ◽  
John E. Tobiason ◽  
Michael Hayes ◽  
Evelyn Wolfram ◽  
David A. Reckhow ◽  
...  

This paper reports on field studies and model development aimed at understanding coliform fate and transport in the Quabbin Reservoir, an oligotrophic drinking water supply reservoir. An investigation of reservoir currents suggested the importance of wind driven phenomena, and that both lateral and vertical circulation patterns exist. In-situ experiments of coliform decay suggested dependence on light intensity and yielded an appropriate decay coefficient to be used in CE-QUAL-W2, a two-dimensional hydrodynamic and water quality model. Modeling confirmed the sensitivity of reservoir outlet concentration to vertical variability within the reservoir, meteorological conditions, and location of coliform source.


Sign in / Sign up

Export Citation Format

Share Document